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Abstract. In this paper, the module-algebra structures of Uq(sl(m + 1)) =
H(ei, fi, k

±1
i )1≤i≤m on the coordinate algebra of quantum vector spaces are

studied. We denote the coordinate algebra of quantum n -dimensional vector
space by Aq(n). As our main result, first, we give a complete classification of
module-algebra structures of Uq(sl(m + 1)) on Aq(3) when ki ∈ Aut L(Aq(3))
as actions on Aq(3) for i = 1, · · · ,m and m ≥ 2 and with the same method, on
Aq(2), all module-algebra structures of Uq(sl(m+ 1)) are characterized. Lastly,
the module-algebra structures of Uq(sl(m + 1)) on Aq(n) are obtained for any
n ≥ 4.
Mathematics Subject Classification 2010: 81R50, 16T20, 17B37, 20G42, 16S40.
Key Words and Phrases: Quantum enveloping algebra, coordinate algebra of
quantum vector space, Hopf action, module algebra, weight.

1. Introduction

Quantum groups were introduced independently by Drinfeld in [7] and Jimbo in
[16] which opened the floodgates for applications of Hopf algebras to physics,
invariant theory for knots and links, and representations closely connected to Lie
theory. Some basic references for quantum groups are [20] and [12]. Moreover,
the actions of Hopf algebras [21] and their generalizations (see, e.g., [6]) play an
important role in quantum group theory [18, 19] and in its various applications
in physics [4]. However, it was long believed that the quantum plane [20] admits
only one special symmetry [22] inspired by the action of Uq(sl(2)) (in other words
the Uq(sl(2))-module algebra structure [18]). In [15], the coordinate algebra of
quantum n-dimensional vector space is equipped with a special Uq(sl(m + 1))-
module algebra structure via a certain q -differential operator realization. Then it
was shown [8], that the Uq(sl(2))-module algebra structure on the quantum plane
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is much richer and consists of 8 nonisomorphic cases [8, 9]. The full classification
was given in terms of a so-called weight which was introduced for this purpose. Its
introduction follows from the general form of an automorphism of the quantum
plane [1]. Some properties of the actions of commutative Hopf algebras on quantum
polynomials were studied in [2, 3]. In addition, there are also many papers studying
Hopf algebras acting on some special algebras, for example, commutative domains,
fields, filtered regular algebras and so on, see [5], [10] and [11].

Following [12], we consider here the actions of the quantum universal en-
veloping algebra Uq(sl(m+1)) on the coordinate algebra of quantum n-dimensional
vector space Aq(n). We use the method of weights [8, 9] to classify some actions
in terms of action matrices which are introduced. We then present the Dynkin
diagrams for the actions thus obtained and find their classical limit. A special
case discussed in this paper was included in [15].

This work is organized as follows. In Section 2, we give the necessary
preliminary information and notation, as well as proving an important lemma
about actions on generators and any elements of Aq(n) . In Section 3, we study
Uq(sl(2))-module algebra structures on Aq(n) using the method of weights [8, 9].
The 0-th homogeneous component and 1-st homogeneous component of the action
matrix are presented. In Section 4, we study the concrete actions of Uq(sl(2))
on Aq(3) and characterize all module algebra structures of Uq(sl(3)) on Aq(3)
which make some preparations on the classification of module algebra structures
of Uq(sl(m+ 1)) on Aq(3). In Section 5, with the results of Section 4, all module-
algebra structures of Uq(sl(m + 1)) on Aq(3) when m ≥ 2 are presented. And,
with the same method, all module-algebra structures of Uq(sl(m+1)) on Aq(2) are
given. Section 6 is devoted to study the module-algebra structures of Uq(sl(m+1))
on Aq(n) for n ≥ 4.

In this paper, all algebras, modules and vector spaces are over the field C
of complex numbers.

2. Preliminaries

Let H be a Hopf algebra whose comultiplication is ∆, counit is ε and antipode is
S and let A be a unital algebra with unit 1. We use the Sweedler notation, such
that ∆(h) =

∑
i h
′
i ⊗ h

′′
i .

Definition 2.1. By a structure of an H -module algebra on A , we mean a
homomorphism π : H → EndCA such that:
(1) π(h)(ab) =

∑
i π(h

′
i)(a)π(h

′′
i )(b) for all h ∈ H , a , b ∈ A ,

(2) π(h)(1) = ε(h)1 for all h ∈ H .

The structures π1 , π2 are said to be isomorphic, if there exists an automor-
phism ψ of A such that ψπ1(h)ψ−1 = π2(h) for all h ∈ H .

Throughout this paper, we assume that q ∈ C\{0} and q is not a root of
unity. We use the q -integers which were introduced by Heine [14] and are called
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the Heine numbers or q -deformed numbers [17] (for any integer n > 0)

(n)q =
qn − 1

q − 1
= 1 + q + · · ·+ qn−1.

First, we will introduce the definition of Uq(sl(m+ 1)).

Definition 2.2. The quantum universal enveloping algebra Uq(sl(m+1)) (m ≥
1) as the algebra is generated by (ei, fi, ki, k

−1
i )1≤i≤m with the relations

kik
−1
i = k−1i ki = 1, kikj = kjki, (2.1)

kiejk
−1
i = qaijej, kifjk

−1
i = q−aijfj, (2.2)

[ei, fj] = δij
ki − k−1i
q − q−1

, (2.3)

eiej = ejei and fifj = fjfi, if aij = 0, (2.4)

if aij = −1,

e2i ej − (q + q−1)eiejei + eje
2
i = 0, (2.5)

f 2
i fj − (q + q−1)fifjfi + fjf

2
i = 0, (2.6)

where for any i , j ∈ {1, 2, · · · ,m} , aii = 2 and aij = 0, if |i− j| > 1; aij = −1,
if |i− j| = 1.

The standard Hopf algebra structure on Uq(sl(m+ 1)) is determined by

∆(ei) = 1⊗ ei + ei ⊗ ki, (2.7)

∆(fi) = k−1i ⊗ fi + fi ⊗ 1, (2.8)

∆(ki) = ki ⊗ ki, ∆(k−1i ) = k−1i ⊗ k−1i , (2.9)

ε(ki) = ε(k−1i ) = 1, (2.10)

ε(ei) = ε(fi) = 0, (2.11)

S(ei) = −eik−1i , S(fi) = −kifi, (2.12)

S(ki) = k−1i , S(k−1i ) = ki, (2.13)

for i ∈ {1, 2, · · · ,m} . We will use the notation Uq(sl(m+1)) = H(ei, fi, k
±1
i )1≤i≤m .

Let us introduce the definition of the coordinate algebra of quantum n-
dimensional vector space (see [13, 2]).

Definition 2.3. The coordinate algebra of quantum n-dimensional vector space,
denoted by Aq(n), is a unital algebra generated by n generators xi for i ∈
{1, · · · , n} satisfying the relations

xixj = qxjxi for any i > j. (2.14)

The coordinate algebra of quantum n-dimensional vector space Aq(n) is
also called a quantum n-space. If n = 2, Aq(2) is also called a quantum plane
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(see [18]). In this case, Duplij and Sinel’shchikov studied the classification of
Uq(sl(2))-module algebra structures on Aq(2) in [8].

Next, we consider the automorphisms of Aq(n). Obviously, ϕ : Aq(n) →
Aq(n) is an automorphism defined as follows:

ϕ : xi → αixi,

with αi ∈ C \ {0} for i ∈ {1, · · · , n} . In addition, all such automorphisms form
a subgroup of the automorphism group of Aq(n). We denote this subgroup by
Aut L(Aq(n)). It should be pointed out that there are other automorphisms of
Aq(3). For example, σ : Aq(3)→ Aq(3) given by

σ(x1) = α1x1, σ(x2) = α2x2 + βx1x3, σ(x3) = α3x3,

with β and αi ∈ C\{0} for i ∈ {1, 2, 3} is an automorphism of Aq(3). Throughout
this paper, we restrict the actions of ki in Uq(sl(m+1)) on Aq(n) to Aut L(Aq(n))
for all m and n .

Finally, we present a lemma which will be useful for checking the module-
algebra structures of Uq(sl(m+ 1)) on Aq(n).

Lemma 2.4. Given the module-algebra actions of the generators ki , ei , fi of
Uq(sl(m + 1)) on Aq(n) for i ∈ {1, · · · ,m}, if an element in the ideal formed
from the relations (2.1)-(2.6) of Uq(sl(m + 1)) acting on the generators xi of
Aq(n) produces zero for i ∈ {1, · · · , n}, then this element acting on any v ∈ Aq(n)
produces zero.

Proof. Here, we only prove that, if
e2i ei+1(x)− (q + q−1)eiei+1ei(x) + ei+1e

2
i (x) = 0 and

e2i ei+1(y)− (q + q−1)eiei+1ei(y) + ei+1e
2
i (y) = 0, then

e2i ei+1(xy)− (q + q−1)eiei+1ei(xy) + ei+1e
2
i (xy) = 0 where

x, y are both generators of Aq(n). The other relations can be proved similarly.
e2i ei+1(xy)− (q + q−1)eiei+1ei(xy) + ei+1e

2
i (xy)

= e2i (xei+1(y) + ei+1(x)ki+1(y))− (q + q−1)eiei+1(xei(y) + ei(x)ki(y))

+ei+1ei(xei(y) + ei(x)ki(y))

= ei(xeiei+1(y) + ei(x)kiei+1(y) + ei+1(x)eiki+1(y) + eiei+1(x)kiki+1(y))

−(q + q−1)ei(xei+1ei(y) + ei+1(x)ki+1ei(y) + ei(x)ei+1ki(y) + ei+1ei(x)

·ki+1ki(y)) + ei+1(xe
2
i (y) + ei(x)kiei(y) + ei(x)eiki(y) + e2i (x)k2i (y))

= (xe2i ei+1(y)− (q + q−1)xeiei+1ei(y) + xei+1e
2
i (y)) + (e2i ei+1(x)− (q + q−1)

·eiejei(x) + eje
2
i (x))k2i ki+1(y) + (ei(x)kieiei+1(y) + ei(x)eikiei+1(y)
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−(q + q−1)ei(x)eiei+1ki(y)) + (e2i (x)k2i ei+1(y)− (q + q−1)e2i (x)

·kiei+1ki(y) + e2i (x)ei+1k
2
i (y)) + (ei+1(x)e2i ki+1(y)− (q + q−1)ei+1(x)

·eiki+1ei(y) + ei+1(x)ki+1e
2
i (y)) + (eiei+1(x)kieiki+1(y) + eiei+1(x)

·eikiki+1(y)− (q + q−1)eiei+1(x)kiki+1ei(y)) + (−(q + q−1)ei+1ei(x)

·eiki+1ki(y) + ei+1ei(x)ki+1kiei(y) + ei+1ei(x)ki+1eiki(y))

+(−(q + q−1)ei(x)kiei+1ei(y) + ei(x)ei+1kiei(y) + ei(x)ei+1eiki(y))

= 0.

Thus, the lemma holds.

Therefore, by Lemma 2.4, in checking whether the relations of Uq(sl(m+1)),
acting on any v ∈ Aq(n), produce zero, we only need to check whether they produce
zero when acting on the generators x1 , · · · , xn .

3. Properties of Uq(sl(2))-module algebras on Aq(n)

In this section, let us assume that Uq(sl(2)) is generated by k , e , f . Then, we will
study the module-algebra structures of Uq(sl(2)) on Aq(n) when k ∈ Aut L(Aq(n))
and n ≥ 3.

By the definition of module algebra, it is easy to see that any action of
Uq(sl(2)) on Aq(n) is determined by the following 3× n matrix with entries from
Aq(n):

M
def
=

 k(x1) k(x2) · · · k(xn)
e(x1) e(x2) · · · e(xn)
f(x1) f(x2) · · · f(xn)

 , (3.15)

which is called the action matrix (see [8]). Given a Uq(sl(2))-module algebra
structure on Aq(n), obviously, the action of k determines an automorphism of
Aq(n). Therefore, by the assumption k ∈ Aut L(Aq(n)), we can set

Mk
def
=
[
k(x1) k(x2) · · · k(xn)

]
=
[
α1x1 α2x2 · · · αnxn

]
,

where αi for i ∈ {1, · · · , n} are non-zero complex numbers. So, every monomial
xm1
1 xm2

2 · · ·xmn
n ∈ Aq(n) is an eigenvector for k and the associated eigenvalue

αm1
1 αm2

2 · · ·αmn
n is called the weight of this monomial, which will be written as

wt(xm1
1 xm2

2 · · ·xmn
n ) = αm1

1 αm2
2 · · ·αmn

n .

Set

Mef
def
=

[
e(x1) e(x2) · · · e(xn)
f(x1) f(x2) · · · f(xn)

]
. (3.16)

Then, we have

wt(Mef )
def
=

[
wt(e(x1)) wt(e(x2)) · · · wt(e(xn))
wt(f(x1)) wt(f(x2)) · · · wt(f(xn))

]

./

[
q2α1 q2α2 · · · q2αn
q−2α1 q−2α2 · · · q−2αn

]
,
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where the relation A = (aij) ./ B = (bij) means that for every pair of indices i , j
such that both aij and bij are nonzero, one has aij = bij .

In the following, we denote the i-th homogeneous component of M , whose
elements are just the i-th homogeneous components of the corresponding entries
of M , by (M)i . Set

(M)0 =

 0 0 · · · 0
a1 a2 · · · an
b1 b2 · · · bn


0

.

Then, we obtain

wt((M)0) ./

 0 0 · · · 0
q2α1 q2α2 · · · q2αn
q−2α1 q−2α2 · · · q−2αn


0

(3.17)

./

 0 0 · · · 0
1 1 · · · 1
1 1 · · · 1


0

.

An application of e and f to (2.14) gives the following equalities

xie(xj)− qαie(xj)xi = qxje(xi)− αje(xi)xj for i > j, (3.18)

f(xi)xj − qα−1j xjf(xi) = qf(xj)xi − α−1i xif(xj) for i > j. (3.19)

After projecting the equalities above to (Aq(n))1 , we obtain

aj(1− qαi)xi = ai(q − αj)xj for i > j;

bi(1− qα−1j )xj = bj(q − α−1i )xi for i > j.

Therefore, for i > j , we obtain

aj 6= 0⇒ αi = q−1, ai 6= 0⇒ αj = q, (3.20)

bi 6= 0⇒ αj = q, bj 6= 0⇒ αi = q−1. (3.21)

Then, we have for any j ∈ {1, · · · , n} ,

aj 6= 0⇒ αi = q−1 for ∀ i > j, αi = q for ∀ i < j, (3.22)

bj 6= 0⇒ αi = q−1 for ∀ i > j, αi = q for ∀ i < j. (3.23)

By (3.17) and using the above equalities, we get

aj 6= 0⇒ α1 = q, · · · , αj−1 = q, αj = q−2, αj+1 = q−1, · · · , αn = q−1,

bj 6= 0⇒ α1 = q, · · · , αj−1 = q, αj = q2, αj+1 = q−1, · · · , αn = q−1.

So, there are 2n+ 1 cases for 0-th homogeneous component of the action matrix
as follows: aj 6= 0, ai = 0 for i 6= j and all bi = 0 for any j ∈ {1, · · · , n} ; bj 6= 0,
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bi = 0 for i 6= j and all ai = 0 for any j ∈ {1, · · · , n} ; aj = 0 and bj = 0 for any
j ∈ {1, · · · , n} .

For the 1-st homogeneous component, since wt(e(xi)) = q2wt(xi) 6= wt(xi),
we have (e(xi))1 =

∑
s 6=i cisxs for some cis ∈ C . Similarly, we set (f(xi))1 =∑

s 6=i disxs for some dis ∈ C .

After projecting Equations (3.18)-(3.19) to (Aq(n))2 , we can obtain, for any
i > j , ∑

s 6=j
s<i

(q − qαi)cjsxsxi + (1− qαi)cjix2i +
∑
s>i

(1− q2αi)cjsxixs =

∑
s<j

(q2 − αj)cisxsxj + (q − αj)cijx2j +
∑
s 6=i
s>j

(q − qαj)cisxjxs,

∑
s<j

(1− q2α−1j )disxsxj + (1− qα−1j )dijx
2
j +

∑
s>j
s 6=i

(q − qα−1j )disxjxs =

∑
s<i
s 6=j

(q − qα−1i )djsxsxi + (q − α−1i )djix
2
i +

∑
s>i

(q2 − α−1i )djsxixs.

Therefore, we have

cjs 6= 0 (s < i, s 6= j)⇒ αi = 1, cjs = 0 for all s ≥ i,

cji 6= 0⇒ αi = q−1, cjs = 0 for any s 6= i,

cjs 6= 0 (s > i)⇒ αi = q−2, cjs = 0 for all s ≤ i,

cis 6= 0 (s < j)⇒ αj = q2, cis = 0 for all s ≥ j,

cij 6= 0⇒ αj = q, cis = 0 for all s 6= j,

cis 6= 0 (s > j, s 6= i)⇒ αj = 1, cis = 0 for all s ≤ j,

dis 6= 0 (s < j)⇒ αj = q2, dis = 0 for all s > j,

dij 6= 0⇒ αj = q, dis = 0 for all s 6= j,

dis 6= 0 (s > j, s 6= i)⇒ αj = 1, dis = 0 for all s ≤ j,

djs 6= 0 (s < i, s 6= j)⇒ αi = 1, djs = 0 for all s ≥ i,

dji 6= 0⇒ αi = q−1, djs = 0 for all s 6= i,

djs 6= 0 (s > i)⇒ αi = q−2, djs = 0 for all s ≤ i.

Therefore, we have for any j ∈ {1, · · · , n} ,

cjs 6= 0 (s > j) ⇒ α1 = 1, · · · , αj−1 = 1, αj+1 = q−2, · · · ,
αs−1 = q−2, αs = q−1, αs+1 = 1, · · · , αn = 1,

cjs 6= 0 (s < j) ⇒ α1 = 1, · · · , αs−1 = 1, αs = q, αs+1 = q2, · · · ,
αj−1 = q2, αj+1 = 1, · · · , αn = 1,

djs 6= 0 (s > j) ⇒ α1 = 1, · · · , αj−1 = 1, αj+1 = q−2, · · · ,
αs−1 = q−2, αs = q−1, αs+1 = 1, · · · , αn = 1,

djs 6= 0 (s < j) ⇒ α1 = 1, · · · , αs−1 = 1, αs = q, αs+1 = q2, · · · ,
αj−1 = q2, αj+1 = 1, · · · , αn = 1.
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Since wt((Mef )1) =

[
q2α1 q2α2 · · · q2αn
q−2α1 q−2α2 · · · q−2αn

]
1

, we obtain for any

j ∈ {1, · · · , n} ,

cjs 6= 0 (s > j) ⇒ α1 = 1, · · · , αj−1 = 1, αj = q−3, αj+1 = q−2, · · · ,
αs−1 = q−2, αs = q−1, αs+1 = 1, · · · , αn = 1,

cjs 6= 0 (s < j) ⇒ α1 = 1, · · · , αs−1 = 1, αs = q, αs+1 = q2, · · · ,
αj−1 = q2, αj = q−1, αj+1 = 1, · · · , αn = 1,

djs 6= 0 (s > j) ⇒ α1 = 1, · · · , αj−1 = 1, αj = q, αj+1 = q−2, · · · ,
αs−1 = q−2, αs = q−1, αs+1 = 1, · · · , αn = 1,

djs 6= 0 (s < j) ⇒ α1 = 1, · · · , αs−1 = 1, αs = q, αs+1 = q2, · · · ,
αj−1 = q2, αj = q3, αj+1 = 1, · · · , αn = 1.

By the above discussion, we have only the following possibilities for the 1-st
homogeneous component: cij 6= 0 for some i 6= j , other cst equal to zero and all
dst = 0; dij 6= 0 for some i 6= j , other dst equal to zero and all cst = 0; cj+1,j 6= 0,
dj,j+1 6= 0 for some j ∈ {1, · · · , n} .

Obviously, if both the 0-th homogeneous component and the 1-st homoge-
neous component of Mef are nonzero, there are no possibilities except when n = 3.
For n = 3, there are only two possibilities (a2 , d13 , b2 , c31 ∈ C\{0}):([

0 a2 0
0 0 0

]
0

,

[
0 0 0
d13 0 0

]
1

)
⇒ α1 = q, α2 = q−2, α3 = q−1, (3.24)

([
0 0 0
0 b2 0

]
0

,

[
0 0 c31
0 0 0

]
1

)
⇒ α1 = q, α2 = q2, α3 = q−1. (3.25)

Moreover, there are no possibilities when the 0-th homogeneous component
of Mef is 0 and the 1-st homogeneous component of Mef have only one nonzero
position. The reasons are the same as those in [8].

Therefore, by the above discussion, we can obtain the following theorem.

Theorem 3.1. Given a module algebra structure of Uq(sl(2)) on Aq(n). The 0-
th homogeneous component and 1-st homogeneous component of the action matrix
must be one of the following cases:
Case (3.24), Case (3.25) when n = 3,([

0 0 · · · ai · · · 0
0 0 · · · 0 · · · 0

]
0

,

[
0 0 · · · 0
0 0 · · · 0

]
1

)
, ai 6= 0 for any i ∈ {1, · · ·n},([

0 0 · · · 0 · · · 0
0 0 · · · bi · · · 0

]
0

,

[
0 0 · · · 0
0 0 · · · 0

]
1

)
, bi 6= 0 for any i ∈ {1, · · ·n},([

0 0 · · · 0
0 0 · · · 0

]
0

,

[
0 0 · · · 0 cj+1,j · · · 0
0 0 · · · dj,j+1 0 · · · 0

]
1

)
, cj+1,j , dj,j+1 6= 0 for

any j ∈{1, · · · , n−1},([
0 0 · · · 0
0 0 · · · 0

]
0

,

[
0 0 · · · 0
0 0 · · · 0

]
1

)
for any n ≥ 3.
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4. General structure of Uq(sl(m + 1))-module algebras on Aq(3)

In this section, we study the concrete actions of Uq(sl(2)) on Aq(3) and module
algebra structures of Uq(sl(3)) on Aq(3) which make some preparations on the
classification of module algebra structures of Uq(sl(m+ 1)) on Aq(3) for m ≥ 2.

By Theorem 3.1, we only need to consider 11 possibilities([
0 0 0
0 0 0

]
0

,

[
0 0 0
0 0 0

]
1

)
,

([
a1 0 0
0 0 0

]
0

,

[
0 0 0
0 0 0

]
1

)
,([

0 0 0
0 0 b3

]
0

,

[
0 0 0
0 0 0

]
1

)
,

([
0 0 0
0 0 0

]
0

,

[
0 c21 0
d12 0 0

]
1

)
,([

0 0 0
0 0 0

]
0

,

[
0 0 c32
0 d23 0

]
1

)
,

([
0 a2 0
0 0 0

]
0

,

[
0 0 0
0 0 0

]
1

)
,([

0 a2 0
0 0 0

]
0

,

[
0 0 0
d13 0 0

]
1

)
,

([
0 0 0
0 b2 0

]
0

,

[
0 0 0
0 0 0

]
1

)
,([

0 0 0
0 b2 0

]
0

,

[
0 0 c31
0 0 0

]
1

)
,

([
0 0 a3
0 0 0

]
0

,

[
0 0 0
0 0 0

]
1

)
,([

0 0 0
b1 0 0

]
0

,

[
0 0 0
0 0 0

]
1

)
where ai 6= 0, bi 6= 0 for i = 1, 2, 3, and c21 , d12 ,

c32 , d23 , d13 , c31 are not zero.

For convenience, we denote these 11 kinds of cases in the above order by
(∗1), · · · , (∗11) respectively.

Lemma 4.1. For Case (∗1), all Uq(sl(2))-module algebra structures on Aq(3)
are as follows

k(x1) = ±x1, k(x2) = ±x2, k(x3) = ±x3, (4.26)

e(x1) = e(x2) = e(x3) = f(x1) = f(x2) = f(x3) = 0. (4.27)

Proof. The proof is similar to that in Theorem 4.2 in [8].

Lemma 4.2. For Case (∗2), all Uq(sl(2))-module algebra structures on Aq(3)
are

k(x1) = q−2x1, k(x2) = q−1x2, k(x3) = q−1x3, (4.28)

e(x1) = a1, e(x2) = 0, e(x3) = 0, (4.29)

f(x1) = −qa−11 x21, (4.30)

f(x2) = −qa−11 x1x2 + ξ1x2x
2
3 + ξ2x

3
2 + ξ3x

3
3, (4.31)

f(x3) = −qa−11 x1x3 + ξ4x2x
2
3 + (1 + q + q2)ξ2x

2
2x3 − q−1ξ1x33, (4.32)

where a1 ∈ C\{0}, and ξ1 , ξ2 , ξ3 , ξ4 ∈ C.

Proof. Since wt(Mef ) ./

[
1 q q
q−4 q−3 q−3

]
and α1 = q−2 , α2 = q−1 , α3 =

q−1 , we must have e(x1) = a1 , e(x2) = 0, e(x3) = 0. For the same reason, f(x1),
f(x2), f(x3) must be of the following forms:
f(x1) = u1x

2
1+u2x1x

2
2+u3x1x

2
3+u4x1x2x3+u5x2x

3
3+u6x

2
2x

2
3+u7x

3
2x3+u8x

4
2+u9x

4
3,

f(x2) = v1x1x2 + v2x1x3 + v3x2x
2
3 + v4x

2
2x3 + v5x

3
2 + v6x

3
3,
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f(x3) = w1x1x2 + w2x1x3 + w3x2x
2
3 + w4x

2
2x3 + w5x

3
2 + w6x

3
3,

where these coefficients are in C . Then, we consider (3.18)-(3.19). Taking e(x1),
e(x2), e(x3), f(x1), f(x2), f(x3) into the six equalities, and comparing the
coefficients, we obtain

f(x1) = u1x
2
1,

f(x2) = u1x1x2 + v3x2x
2
3 + v5x

3
2 + v6x

3
3,

f(x3) = u1x1x3 + w3x2x
2
3 + (1 + q + q2)v5x

2
2x3 − q−1v3x33.

Using ef(u)−fe(u) = k−k−1

q−q−1 (u), for any u ∈ {x1, x2, x3} , we get u1 = −qa−11 . So,
the proof is finished.

Lemma 4.3. For Case (∗3), all Uq(sl(2))-module algebra structures on Aq(3)
are as follows

k(x1) = qx1, k(x2) = qx2, k(x3) = q2x3, (4.33)

e(x1) = −qb−13 x1x3 + µ1x
2
1x2 − qµ2x

3
1 + (1 + q + q2)µ3x1x

2
2, (4.34)

e(x2) = −qb−13 x2x3 + µ2x
2
1x2 + µ3x

3
2 + µ4x

3
1, (4.35)

e(x3) = −qb−13 x23, (4.36)

f(x1) = 0, f(x2) = 0, f(x3) = b3, (4.37)

where b3 ∈ C\{0}, and µ1 , µ2 , µ3 µ4 ∈ C.

Proof. The proof is similar to that in Lemma 4.2.

Lemma 4.4. For Case (∗4), to satisfy (3.18)-(3.19), the actions of k , e, f
must be of the following form

k(x1) = qx1, k(x2) = q−1x2, k(x3) = x3,

e(x1) =
∑

m≥0,p≥0
p 6=m+3

am,px
m+3
1 xm2 x

p
3 +

∑
m≥0

dmx
m+3
1 xm2 x

m+3
3 ,

e(x2) = c21x1 +
∑

m≥0,p≥0
p 6=m+3

bm,px
m+2
1 xm+1

2 xp3,

e(x3) =
∑

m≥0,p≥0
p 6=m+3

cm,px
m+2
1 xm2 x

p+1
3 +

∑
m≥0

emx
m+2
1 xm2 x

m+4
3 ,

f(x1) = d12x2 +
∑

m≥0,p≥0
p 6=m+1

dm,px
m+1
1 xm+2

2 xp3 +
∑
m≥0

hmx
m+1
1 xm+2

2 xm+1
3 ,

f(x2) =
∑

m≥0,p≥0
p 6=m+1

em,px
m
1 x

m+3
2 xp3,

f(x3) =
∑

m≥0,p≥0
p 6=m+1

gm,px
m
1 x

m+2
2 xp+1

3 +
∑
m≥0

gmx
m
1 x

m+2
2 xm+2

3 ,
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where c21, d12 ∈ C\{0}, the other coefficients are in C and am,p

bm,p
= − (m+p+1)q

qp−1(m+3−p)q ,
bm,p

cm,p
= qp−1(m+3−p)q

(2m+2)q
, dm

em
= − (2m+4)q

(2m+2)q
, dm,p

em,p
= − (m+p+3)q

qp+1(m+1−p)q , dm,p

gm,p
= − (m+p+3)q

q(2m+2)q
,

hm
gm

= − (2m+4)q
q(2m+2)q

.

In particular, there are the following Uq(sl(2))-module algebra structures on
Aq(3)

k(x1) = qx1, k(x2) = q−1x2, k(x3) = x3, (4.38)

e(x1) = 0, e(x2) = c21x1, e(x3) = 0, (4.39)

f(x1) = c−121 x2, f(x2) = 0, f(x3) = 0, (4.40)

where c21 ∈ C\{0}.

Proof. In this case, we get α1 = q , α2 = q−1 , α3 = 1. Therefore, we obtain

wt(Mef ) ./

[
q3 q q2

q−1 q−3 q−2

]
. Since wt(e(x1)) = q3 , wt(e(x2)) = q and

wt(e(x3)) = q2 , using (3.18) and by some computations, we can obtain e(x1),
e(x2) and e(x3) in the forms appearing in the lemma. Similarly, we also can
determine the forms of f(x1), f(x2) and f(x3) in the lemma.

Note that (4.38)-(4.40) determine the module-algebra structures of Uq(sl(2))
on Aq(3).

Lemma 4.5. For Case (∗5), to satisfy (3.18)-(3.19), the actions of Uq(sl(2))
on Aq(3) must be of the following form

k(x1) = x1, k(x2) = qx2, k(x3) = q−1x3,

e(x1) =
∑

m≥0,p≥0
p 6=m+1

ãm,px
p+1
1 x2+m2 xm3 +

∑
m≥0

ãmx
m+2
1 xm+2

2 xm3 ,

e(x2) =
∑

m≥0,p≥0
p 6=m+1

b̃m,px
p
1x

3+m
2 xm3 ,

e(x3) = c32x2 +
∑

m≥0,p≥0
p 6=m+1

c̃m,px
p
1x

m+2
2 xm+1

3 +
∑
m≥0

c̃mx
m+1
1 xm+2

2 xm+1
3 ,

f(x1) =
∑

m≥0,p≥0
p 6=m+3

d̃m,px
p+1
1 xm2 x

m+2
3 +

∑
m≥0

d̃mx
m+4
1 xm2 x

m+2
3 ,

f(x2) = d23x3 +
∑

m≥0,p≥0
p6=m+3

ẽm,px
p
1x

m+1
2 xm+2

3 ,

f(x3) =
∑

m≥0,p≥0
p 6=m+3

g̃m,px
p
1x

m
2 x

m+3
3 +

∑
m≥0

g̃mx
m+3
1 xm2 x

m+3
3 ,

where c32 , d23 ∈ C\{0}, other coefficients are in C and ãm,p

b̃m,p
= (2m+2)q

qp(m−p+1)q
,

ãm,p

c̃m,p
= − q(2m+2)q

(m+p+3)q
, ãm

c̃m
= − q(2m+2)q

(2m+4)q
, d̃m,p

ẽm,p
= (2m+2)q

qp−1(m−p+3)q
, d̃m,p

g̃m,p
= − (2m+2)q

(m+p+1)q
,

d̃m
g̃m

= − (2m+2)q
(2m+4)q

.
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There are the following Uq(sl(2))-module algebra structures on Aq(3)

k(x1) = x1, k(x2) = qx2, k(x3) = q−1x3, (4.41)

e(x1) = 0, e(x2) = 0, e(x3) = c32x2, (4.42)

f(x1) = 0, f(x2) = c−132 x3, f(x3) = 0, (4.43)

where c32 ∈ C\{0}.

Proof. The proof is similar to that in Lemma 4.4.

Lemma 4.6. For Case (∗6) and Case (∗7), to satisfy (3.18)-(3.19), the actions
of k , e and f on Aq(3) are

k(x1) = qx1, k(x2) = q−2x2, k(x3) = q−1x3,

e(x1) = σx31 +
∑
n≥0

σnx
2n+5
1 xn+1

2 +
∑
p≥0

σ̃px
p+4
1 xp+1

3

+
∑

n≥0,p≥0

σn,px
2n+p+6
1 xn+1

2 xp+1
3 ,

e(x2) = a2 + ρx21x2 +
∑
n≥0

ρnx
2n+4
1 xn+2

2 +
∑
p≥0

ρ̂px
p+3
1 x2x

p+1
3

+
∑

n≥0,p≥0

ρn,px
2n+p+5
1 xn+2

2 xp+1
3 ,

e(x3) = τx21x3 +
∑
n≥0

τnx
2n+4
1 xn+1

2 x3 +
∑
p≥0

τ̃px
p+3
1 xp+2

3

+
∑

n≥0,p≥0

τn,px
2n+p+5
1 xn+1

2 xp+2
3 ,

f(x1) = d13x3 +
∑
p≥0

λpx
p+1
1 xp+2

3 +
∑
n≥0

λ̃nx
2n+1
1 xn+1

2 +
∑
n≥0

λ̂nx
2n+2
1 xn+1

2 x3

+
∑

n≥0,p≥0

λn,px
2n+p+3
1 xn+1

2 xp+2
3 ,

f(x2) =
∑
n≥0

ν̃nx
2n
1 x

n+2
2 +

∑
n≥0

ν̂nx
2n+1
1 xn+2

2 x3 +
∑

n≥0,p≥0

νn,px
2n+p+2
1 xn+2

2 xp+2
3 ,

f(x3) =
∑
p≥0

ωpx
p
1x

p+3
3 +

∑
n≥0

ω̃nx
2n
1 x

n+1
2 x3 +

∑
n≥0

ω̂nx
2n+1
1 xn+1

2 x23

+
∑

n≥0,p≥0

ωn,px
2n+p+2
1 xn+1

2 xp+3
3 ,

where a2 ∈ C\{0} and the other coefficients are in C, and σ
ρ

= − q2

(4)q
, σn

ρn
=

− q2(n+2)q
(2n+6)q

, σ̃p
ρ̃p

= − (p+2)q
qp−1(4)q

, σn,p

ρn,p
= − (n+p+3)q

qp−1(2n+6)q
, σ

τ
= − q

(3)q
, σn

τn
= − q(n+2)q

(3n+6)q
,

σ̃p
τ̃p

= − q(p+2)q
(p+4)q

, σn,p

τn,p
= − q(n+p+3)q

(3n+p+7)q
, λp
ωp

= − (p+3)q
q(p+1)q

, λ̃n
ω̃n

= − (n+2)q
q(3n+2)q

, λ̂n
ω̂n

= − (n+3)q
q(3n+3)q

,
λn,p

ωn,p
= − (n+p+4)q

q(3n+p+4)q
, λ̃n
ν̃n

= − (n+2)q
q(2n+2)q

, λ̂n
ν̂n

= − (n+3)q
q2(2n+2)q

, λn,p

νn,p
= − (n+p+4)q

qp+3(2n+2)q
.

In particular, there are the following Uq(sl(2))-module algebra structures on
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Aq(3):

k(x1) = qx1, k(x2) = q−2x2, k(x3) = q−1x3, (4.44)

e(x1) = 0, e(x2) = a2, e(x3) = 0, (4.45)

f(x1) = d13x3 + a−12 x1x2 +
n∑
p=0

d̂px
p+1
1 xp+2

3 , f(x2) = −qa−12 x22, (4.46)

f(x3) = −qa−12 x2x3 −
n∑
p=0

q(p+ 1)q
(p+ 3)q

d̂px
p
1x

p+3
3 , (4.47)

where n ∈ N, d13 , d̂p ∈ C for all p, a2 ∈ C\{0}.

Proof. In these two cases, we have the same values of α1 , α2 and α3 , i.e.,

α1 = q , α2 = q−2 , α3 = q−1 . Therefore, wt(Mef ) ./

[
q3 1 q
q−1 q−4 q−3

]
. Using

the equalities (3.18)-(3.19) and by some computations, we can obtain that e(x1),
e(x2), e(x3), f(x1), f(x2), f(x3) are of the forms in this lemma.

Moreover, using (4.44)-(4.47), it is easy to check that ef(u) − fe(u) =
k−k−1

q−q−1 (u), where u ∈ {x1, x2, x3} . Therefore, they determine the module-algebra

structures of Uq(sl(2)) on Aq(3).

Lemma 4.7. For Case (∗8) and Case (∗9), to satisfy (3.18)-(3.19), the actions
of k , e, f are of the form

k(x1) = qx1, k(x2) = q2x2, k(x3) = q−1x3,

e(x1) =
∑
p≥0

αpx
p+3
1 xp3 +

∑
m≥0

α̃mx1x
m+1
2 x2m3 +

∑
m≥0

α̂mx
2
1x

m+1
2 x2m+1

3

+
∑

p≥0,m≥0

αm,px
p+3
1 xm+1

2 x2m+p+2
3 ,

e(x2) =
∑
m≥0

β̃mx
m+2
2 x2m3 +

∑
m≥0

β̂mx1x
m+2
2 x2m+1

3

+
∑

p≥0,m≥0

βm,px
p+2
1 xm+2

2 x2m+p+2
3 ,

e(x3) = c31x1 +
∑
p≥0

γpx
p+2
1 xp+1

3 +
∑
m≥0

γ̃mx
m+1
2 x2m+1

3 +
∑
m≥0

γ̂mx1x
m+1
2 x2m+2

3

+
∑

p≥0,m≥0

γm,px
p+2
1 xm+1

2 x2m+p+3
3 ,

f(x1) = εx1x
2
3 +

∑
p≥0

εpx
p+2
1 xp+3

3 +
∑
m≥0

ε̃mx1x
m+1
2 x2m+4

3

+
∑

m≥0,p≥0

εm,px
p+2
1 xm+1

2 x2m+p+5
3 ,

f(x2) = b2 + θx2x
2
3 +

∑
p≥0

θpx
p+1
1 x2x

p+3
3 +

∑
m≥0

θ̃mx
m+2
2 x2m+4

3

+
∑

m≥0,p≥0

θm,px
p+1
1 xm+2

2 x2m+p+5
3 ,
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f(x3) = ηx33 +
∑
p≥0

ηpx
p+1
1 xp+4

3 +
∑
m≥0

η̃mx
m+1
2 x2m+5

3

+
∑

m≥0,p≥0

ηm,px
p+1
1 xm+1

2 x2m+p+6
3 ,

where b2 ∈ C\{0} and the other coefficients are in C, and αp

γp
= − q(p+1)q

(p+3)q
, α̃m

β̃m
=

(3m+2)q
(2m+2)q

, α̂m

β̂m
= (3m+3)q

q(2m+2)q
, αm,p

βm,p
= (3m+p+4)q

qp+2(2m+2)q
, α̃m

γ̃m
= − q(3m+2)q

(m+2)q
, α̂m

γ̂m
= − q(3m+3)q

(m+3)q
,

αm,p

γm,p
= − q(3m+p+4)q

(p+m+4)q
, ε

θ
= q(3)q

(4)q
, εp

θp
= (p+4)q

qp(4)q
, ε̃m

θ̃m
= q(3m+6)q

(2m+6)q
, εm,p

θm,p
= (3m+p+7)q

qp(2m+6)q
,

ε
η

= −q−1(3)q , εp
ηp

= − (p+4)q
q(p+2)q

, ε̃m
η̃p

= − (3m+6)q
q(m+2)q

, εm,p

ηm,p
= − (3m+p+7)q

q(p+m+3)q
.

There are the following Uq(sl(2))-module algebra structures on Aq(3)

k(x1) = qx1, k(x2) = q2x2, k(x3) = q−1x3, (4.48)

e(x1) = −qb−12 x1x2 −
n∑
p=0

q(p+ 1)q
(p+ 3)q

αpx
p+3
1 xp3, e(x2) = −qb−12 x22, (4.49)

e(x3) = c31x1 + e−10 x2x3 +
n∑
p=0

αpx
p+2
1 xp+1

3 , (4.50)

f(x1) = 0, f(x2) = b2, f(x3) = 0, (4.51)

where n ∈ N, c31 , αp ∈ C for all p, b2 ∈ C\{0}.

Proof. The proof is similar to that in Lemma 4.6.

Lemma 4.8. For Case (∗10), to satisfy (3.18)-(3.19), the actions of k , e, f
on Aq(3) are

k(x1) = qx1, k(x2) = qx2, k(x3) = q−2x3,

e(x1) =
∑

n≥0,p≥0
2+2p−n≥0
n6=p+1

rn,px
3+2p−n
1 xn2x

p
3 +

∑
p≥0

rpx
2+p
1 xp+1

2 xp3,

e(x2) =
∑

n≥0,p≥0
2+2p−n≥0
n6=p+1

sn,px
2+2p−n
1 xn+1

2 xp3,

e(x3) = a3 +
∑

n≥0,p≥0
2+2p−n≥0
n6=p+1

tn,px
2+2p−n
1 xn2x

p+1
3 +

∑
p≥0

tpx
p+1
1 xp+1

2 xp+1
3 ,

f(x1) =
∑

n≥0,p≥0
2p−n≥0
p6=n+2

un,px
2p−n+1
1 xn2x

p+1
3 +

∑
n≥0

unx
n+5
1 xn2x

n+3
3 ,

f(x2) =
∑

n≥0,p≥0
2p−n≥0
p6=n+2

vn,px
2p−n
1 xn+1

2 xp+1
3 ,
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f(x3) =
∑

n≥0,p≥0
2p−n≥0
p 6=n+2

wn,px
2p−n
1 xn2x

p+2
3 +

∑
n≥0

wnx
n+4
1 xn2x

n+4
3 ,

where a3 ∈ C\{0} and the other coefficients are in C, and rn,p

sn,p
= (n+p+1)q

qp+1(p+1−n)q ,
rn,p

tn,p
= − q2(n+p+1)q

(2p+4)q
, rp

tp
= − q2(2p+2)q

(2p+4)q
, un,p

vn,p
= − (n+p+2)q

qp+2(p−2−n)q , un,p

wn,p
= − (n+p+2)q

q(2p+2)q
,

un
wn

= − (2n+4)q
q(2n+6)q

.

Specifically, there are the following Uq(sl(2))-module algebra structures on
Aq(3)

k(x1) = qx1, k(x2) = qx2, k(x3) = q−2x3, (4.52)

e(x1) = 0, e(x2) = 0, e(x3) = a3, (4.53)

f(x1) = a−13 x1x3, f(x2) = a−13 x2x3, f(x3) = −qa−13 x23, (4.54)

where a3 ∈ C\{0}.

Proof. In this case, we have α1 = q , α2 = q , α3 = q−2 . Therefore, wt(Mef ) ./[
q3 q3 1
q−1 q−1 q−4

]
. Then, the proof is similar to those in the above lemmas.

Lemma 4.9. For Case (∗11), to satisfy (3.18)-(3.19), the actions of k , e and
f on Aq(3) are

k(x1) = q2x1, k(x2) = q−1x2, k(x3) = q−1x3,

e(x1) =
∑

m≥0,p≥0
2m−p≥0
m 6=p+2

r̃m,px
m+2
1 xp2x

2m−p
3 +

∑
p≥0

r̃px
p+4
1 xp2x

p+4
3 ,

e(x2) =
∑

m≥0,p≥0
2m−p≥0
m 6=p+2

s̃m,px
m+1
1 xp+1

2 x2m−p3 ,

e(x3) =
∑

m≥0,p≥0
2m−p≥0
m 6=p+2

t̃n,px
m+1
1 xp2x

2m−p+1
3 +

∑
p≥0

t̃px
p+3
1 xp2x

p+5
3 ,

f(x1) = b1 +
∑

m≥0,p≥0
2m+2−p≥0
p6=m+1

ũm,px
m+1
1 xp2x

2m+2−p
3 +

∑
m≥0

ũmx
m+1
1 xm+1

2 xm+1
3 ,

f(x2) =
∑

m≥0,p≥0
2m+2−p≥0
p 6=m+1

ṽm,px
m
1 x

p+1
2 x2m−p+2

3 ,

f(x3) =
∑

n≥0,p≥0
2m+2−p≥0
p 6=m+1

w̃m,px
m
1 x

p
2x

2m−p+3
3 +

∑
m≥0

w̃mx
m
1 x

m+1
2 xm+2

3 ,

where b1 ∈ C\{0} and the other coefficients are in C, and r̃m,p

s̃m,p
= (2m+2)q

qm+1(m−2−p)q ,
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r̃m,p

t̃m,p
= − q(2m+2)q

(m+p+2)q
, rp

tp
= − q(2p+6)q

(2p+4)q
, ũm,p

ṽm,p
= (2m+4)q

qm+3(m+1−p)q , ũm,p

w̃m,p
= − (2m+4)q

q2(m+p+1)q
,

ũm
w̃m

= − (2m+4)q
q2(2m+2)q

.

There are the following Uq(sl(2))-module algebra structures on Aq(3)

k(x1) = q2x1, k(x2) = q−1x2, k(x3) = q−1x3, (4.55)

e(x1) = −qb−11 x21, e(x2) = b−11 x1x2, e(x3) = b−11 x1x3, (4.56)

f(x1) = b1, f(x2) = 0, f(x3) = 0, (4.57)

where b1 ∈ C\{0}.

Proof. The proof is similar to that in Lemma 4.8.

Next, we begin to classify all module-algebra structures of Uq(sl(3)) =
H(ei, fi, k

±1
i )i=1,2 on Aq(3) when ki ∈ Aut L(Aq(3)) for i = 1, 2.

For Uq(sl(3)), there are two sub-Hopf algebras which are isomorphic to
Uq(sl(2)). One is generated by k1 , e1 and f1 . Denote this algebra by A . The
other one, denoted by B , is generated by k2 , e2 and f2 . By the definition of
module algebra of one Hopf algebra, the module-algebra structures on Aq(2) of
these two sub-Hopf algebras are of the kinds discussed above.

Denote 9 cases of the actions of k1 , e1 , f1 (resp. k2 , e2 , f2 ) in Lemma
4.1-Lemma 4.9 by (A1), · · · , (A9) (resp. (B1), · · · , (B9)). To determine
all module-algebra structures of Uq(sl(3)) = H(ei, fi, k

±1
i )i=1,2 on Aq(3) when

ki ∈ Aut L(Aq(3)) for i = 1, 2, we have to find all the actions of k1 , e1 , f1 and
k2 , e2 , f2 which are compatible, i.e., the following equalities hold

k1e2(u) = q−1e2k1(u), k1f2(u) = qf2k1(u), (4.58)

k2e1(u) = q−1e1k2(u), k2f1(u) = qf1k2(u), (4.59)

e1f2(u) = f2e1(u), e2f1(u) = f1e2(u), (4.60)

e21e2(u)− (q + q−1)e1e2e1(u) + e2e
2
1(u) = 0, (4.61)

e22e1(u)− (q + q−1)e2e1e2(u) + e1e
2
2(u) = 0, (4.62)

f 2
1 f2(u)− (q + q−1)f1f2f1(u) + f2f

2
1 (u) = 0, (4.63)

f 2
2 f1(u)− (q + q−1)f2f1f2(u) + f1f

2
2 (u) = 0, (4.64)

and eifi(u)− fiei(u) =
ki−k−1

i

q−q−1 (u) holds for u ∈ {x1, x2, x3} and i ∈ {1, 2} .
Because the actions of k1 , e1 , f1 and k2 , e2 , f2 in Uq(sl(3)) are symmetric,

we only need to check 45 cases, i.e., whether (Ai) is compatible with (Bj) for any
1 ≤ i ≤ j ≤ 9. We use (Ai)|(Bj) to denote that the actions of k1 , e1 , f1 are
those in (Ai) and the actions of k2 , e2 , f2 are those in (Bj). Moreover, in Case
(Aj)|(Bj) (j ≥ 2), since the actions of ei , fi are not zero simultaneously for
i ∈ {1, 2} , (4.58) and (4.59) can not be satisfied simultaneously. Therefore, the
Cases (Aj)|(Bj) (j ≥ 2) should be excluded.

First, let us consider Case (A2)|(B5). Since k2e1(x1) = k2(a1) = a1 ,
q−1e1k2(x1) = q−1a1 and a1 6= 0, k2e1(x1) = q−1e1k2(x1) does not hold. Therefore,
(A2)|(B5) should be excluded. For the same reason, we exclude (A2)|(B6),
(A2)|(B8), (A2)|(B9), (A3)|(B4), (A3)|(B7), (A3)|(B8), (A3)|(B9), (A4)|(B6),
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(A4)|(B7), (A4)|(B8), (A4)|(B9), (A5)|(B7), (A5)|(B8), (A5)|(B9), (A6)|(B7),
(A6)|(B8), (A6)|(B9), (A7)|(B8), (A7)|(B9), (A8)|(B9).

Second, we consider (A1)|(B2). Since k1f2(x1) = −qa−11 x21 and qf2k1(x1) =
∓q2a−11 x21 , we have k1f2(x1) 6= qf2k1(x1). Thus, (A1)|(B2) should be excluded.
Similarly, (A1)|(Bi) should be excluded for i ≥ 3.

Therefore, we only need to consider the following cases: (A1)|(B1), (A2)|
(B3), (A2)|(B4), (A2)|(B7), (A3)|(B5), (A3)|(B6), (A4)|(B5), (A4)|(B7), (A5)
|(B6).

Lemma 4.10. For Case (A1)|(B1), all module-algebra structures of Uq(sl(3))
on Aq(3) are as follows

ki(xj) = ±xj, ei(xj) = 0, fi(xj) = 0,

for i ∈ {1, 2}, j ∈ {1, 2, 3}, which are pairwise non-isomorphic.

Proof. It can be seen that (4.58)-(4.64) are satisfied for any u ∈ {x1, x2, x3}
in this case. Therefore, they are module-algebra structures of Uq(sl(3)) on Aq(3).
Since all the automorphisms of Aq(3) commute with the actions of k1 and k2 , all
these module-algebra structures are pairwise non-isomorphic.

Lemma 4.11. For Case (A2)|(B3), all Uq(sl(3))-module algebra structures on
Aq(3) are as follows:

k1(x1) = q−2x1, k1(x2) = q−1x2, k1(x3) = q−1x3,

k2(x1) = qx1, k2(x2) = qx2, k2(x3) = q2x3,

e1(x1) = a1, e1(x2) = 0, e1(x3) = 0,

e2(x1) = −qb−13 x1x3, e2(x2) = −qb−13 x2x3, e2(x3) = −qb−13 x23,

f1(x1) = −qa−11 x21, f1(x2) = −qa−11 x1x2, f1(x3) = −qa−11 x1x3,

f2(x1) = 0, f2(x2) = 0, f2(x3) = b3,

where a1 , b3 ∈ C\{0}.

All these structures are isomorphic to that with a1 = b3 = 1.

Proof. By Lemma 4.2 and Lemma 4.3, to determine the module-algebra struc-
tures of Uq(sl(3)) on Aq(3), we have to make (4.58)-(4.64) hold for any u ∈
{x1, x2, x3} using the actions of k1 , e1 , f1 in Lemma 4.2 and the actions of k2 ,
e2 , f2 in Lemma 4.3.

Since k1e2(x1) = q−1e2k1(x1) = q−3e2(x1), we have e2(x1) = −qb−13 x1x3 ,
i.e., µ1 = µ2 = µ3 = 0. Using k1e2(x2) = q−1e2k1(x2) = q−2e2(x2), we ob-
tain e2(x2) = −qb−13 x2x3 . Similarly, by k2f1(x2) = qf1k2(x2) = q2f1(x2) and
k2f1(x3) = qf1k2(x3) = q3f1(x3), we get f1(x2) = −qa−11 x1x2 and f1(x3) =
−qa−11 x1x3 . Then, it is easy to check that (4.58)-(4.59) hold for any u ∈ {x1, x2, x3} .

Then, we check that (4.60) holds. Obviously, e1f2(u) = f2e1(u) for any
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u ∈ {x1, x2, x3} . Now, we check e2f1(x1)− f1e2(x1) = 0. In fact,

e2f1(x1)− f1e2(x1)
= e2(−qa−11 x21)− f1(−qb−13 x1x3)

= −qa−11 (x1e2(x1) + e2(x1)k2(x1)) + qb−13 (k−11 (x1)f1(x3) + f1(x1)x3)

= (q2 + q4)a−11 b−13 x21x3 − (q4 + q2)a−11 b−13 x21x3

= 0.

Similarly, other equalities in (4.60) can be checked.

Next, we check that (4.61)-(4.64) hold for any u ∈ {x1, x2, x3} . We only
check

e22e1(x1)− (q + q−1)e2e1e2(x1) + e1e
2
2(x1) = 0.

In fact,

e22e1(x1)− (q + q−1)e2e1e2(x1) + e1e
2
2(x1)

= 0− (q + q−1)e2e1(−qb−13 x1x3) + e1e2(−qb−13 x1x3)

= (q + q−1)b−13 e2(a1x3)− qb−13 e1(−qb−13 x1x
2
3 − q3b−13 x1x

2
3)

= −q(q + q−1)a1b
−2
3 x23 + a1b

−2
3 (1 + q2)x23

= 0.

The other equalities can be checked similarly.

Finally, we claim that all the actions with nonzero a1 and b3 are isomorphic
to the specific action with a1 = 1, b3 = 1. The desired isomorphism is given by
ψa1,b3 : x1 7→ a1x1, x2 7→ x2, x3 7→ b3x3 .

Lemma 4.12. For Case (A2)|(B4), all Uq(sl(3))-module algebra structures on
Aq(3) are as follows

k1(x1) = q−2x1, k1(x2) = q−1x2, k1(x3) = q−1x3,

k2(x1) = qx1, k2(x2) = q−1x2, k2(x3) = x3,

e1(x1) = a1, e1(x2) = 0, e1(x3) = 0,

e2(x1) = 0, e2(x2) = c21x1, e2(x3) = 0,

f1(x1) = −qa−11 x21, f1(x2) = −qa−11 x1x2, f1(x3) = −qa−11 x1x3,

f2(x1) = c−121 x2, f2(x2) = 0, f2(x3) = 0,

where a1 , c21 ∈ C\{0}.

All these module-algebra structures are isomorphic to that with a1 = c21 = 1.

Proof. By the above actions of k1 , e1 , f1 and k2 , e2 , f2 , it is easy to check
that (4.58)-(4.64) hold for any u ∈ {x1, x2, x3} . Therefore, by Lemma 4.2 and
Lemma 4.4, they determine the module-algebra structures of Uq(sl(3)) on Aq(3).

Next, we prove that there are no other actions except these in this lemma.

Using k1e2(x1) = q−1e2k1(x1) = q−3e2(x1), we can obtain e2(x1) = 0. By
Lemma 4.4, we also have e2(x2) = c21x1 and e2(x3) = 0. Similarly, by k1f2(x1) =
qf2k1(x1) = q−1f2(x1), we get f2(x1) = d12x2 . Therefore, f2(x2) = f2(x3) = 0.
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Then, using e2f2(xi)− f2e2(xi) =
k2−k−1

2

q−q−1 (xi) for any i ∈ {1, 2, 3} , we obtain d12 =

c−121 . Since k2f1(x2) = qf1k2(x2) = f1(x2) and k2f1(x3) = qf1k2(x3) = qf1(x3), by
Lemma 4.2, we have f1(x2) = −qa−11 x1x2 + ξ3x

3
3 , f1(x3) = −qa−11 x1x3 .

Due to the conditions of the module algebra, it is easy to see that we have
to let f 2

1 f2(x3)− (q + q−1)f1f2f1(x3) + f2f
2
1 (x3) = 0 hold. On the other hand, we

have

f 2
1 f2(x3)− (q + q−1)f1f2f1(x3) + f2f

2
1 (x3)

= −(q + q−1)f1f2(−qa−11 x1x3) + f2f1(−qa−11 x1x3)

= q(q + q−1)a−11 c−121 f1(x2x3)− qa−11 f2(f1(x1)x3 + q2x1f1(x3))

= q(q + q−1)a−11 c−121 (f1(x2)x3 + qx2f1(x3)) + qa−21 (q + q3)f2(x
2
1x3)

= (q2 + 1)a−11 c−121 (−(q + q3)a−11 x1x2x3 + ξ3x
4
3)

+(q2 + 1)(q + q3)c−121 a
−2
1 x1x2x3

= (q2 + 1)a−11 c−121 ξ3x
4
3.

Hence, we get ξ3 = 0. Therefore, f1(x2) = −qa−11 x1x2 . Thus, there are no other
actions except those in this lemma.

Finally, we claim that all the actions with nonzero a1 and c21 are isomorphic
to the specific action with a1 = 1, c21 = 1. The desired isomorphism is given by
ψa1,c21 : x1 7→ a1x1, x2 7→ a1c21x2, x3 7→ x3 .

Lemma 4.13. For Case (A2)|(B7), all module-algebra structures of Uq(sl(3))
on Aq(3) are as follows

k1(x1) = q−2x1, k1(x2) = q−1x2, k1(x3) = q−1x3,

k2(x1) = qx1, k2(x2) = q2x2, k2(x3) = q−1x3,

e1(x1) = a1, e1(x2) = 0, e1(x3) = 0,

e2(x1) = −qb−12 x1x2, e2(x2) = −qb−12 x22, e2(x3) = c31x1 + b−12 x2x3,

f1(x1) = −qa−11 x21, f1(x2) = −qa−11 x1x2, f1(x3) = −qa−11 x1x3 + ξ4x2x
2
3,

f2(x1) = 0, f2(x2) = b2, f2(x3) = 0,

where a1 , b2 , c31 , ξ4 ∈ C\{0} and c31ξ4 = −qb−12 a−11 .

All module-algebra structures above are isomorphic to that with a1 = b2 =
c31 = 1 and ξ4 = −q .

Proof. By the above actions of k1 , e1 , f1 and k2 , e2 , f2 , it is easy to check
that (4.58)-(4.64) hold for any u ∈ {x1, x2, x3} . Therefore, by Lemma 4.2 and
Lemma 4.7, they determine the module-algebra structures of Uq(sl(3)) on Aq(3).

Next, we prove that there are no other actions except those in this lemma.

By (4.58), we can immediately obtain that e2(x1) = α̃0x1x2 , e2(x2) = β̃0x
2
2 ,

e2(x3) = c31x1 + γ̃0x2x3 , f2(x1) = 0, f2(x2) = b2 and f2(x3) = 0. By Lemma

4.7, α̃0 = β̃0 = −qγ̃0 . According to e2f2(x1) − f2e2(x1) =
k2−k−1

2

q−q−1 (x1), we obtain

γ̃0 = b−12 . Similarly, by (4.59), we have f1(x1) = −qa−11 x21 , f1(x2) = −qa−11 x1x2
and f1(x3) = −qa−11 x1x3 + ξ4x2x

2
3 .
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Next, let us consider the condition e2f1(x3)− f1e2(x3) = 0. Since

e2f1(x3)− f1e2(x3)
= e2(−qa−11 x1x3 + ξ4x2x

2
3)− f1(c31x1 + b−12 x2x3)

= −qa−11 (x1e2(x3) + e2(x1)k2(x3)) + ξ4(x2x3e2(x3) + x2e2(x3)k2(x3)

+e2(x2)k2(x3)k2(x3)) + qc31a
−1
1 x21 − b−12 (k−11 (x2)f1(x3) + f1(x2)x3)

= ξ4c31(q
2 + 1)x1x2x3 + a−11 b−12 (q3 + q)x1x2x3

= 0,

we obtain ξ4c31 = −qa−11 b−12 .

Therefore, there are no other actions except those in this lemma.

Finally, we show that all the actions with nonzero a1 , c31 , b2 and ξ4 are
isomorphic to the specific action with a1 = b2 = c31 = 1 and ξ4 = −q . The desired
isomorphism is given by ψa1,c31,b2 : x1 7→ a1x1, x2 7→ b2x2, x3 7→ a1c31x3 .

Lemma 4.14. For Case (A3)|(B5), all module-algebra structures of Uq(sl(3))
on Aq(3) are as follows:

k1(x1) = qx1, k1(x2) = qx2, k1(x3) = q2x3,

k2(x1) = x1, k2(x2) = qx2, k2(x3) = q−1x3,

e1(x1) = −qb−13 x1x3, e1(x2) = −qb−13 x2x3, e1(x3) = −qb−13 x23,

e2(x1) = 0, e2(x2) = 0, e2(x3) = c32x2,

f1(x1) = 0, f1(x2) = 0, f1(x3) = b3,

f2(x1) = 0, f2(x2) = c−132 x3, f2(x3) = 0,

where b3 , c32 ∈ C\{0}.

All module-algebra structures above are isomorphic to that with b3 = c32 =
1.

Proof. The proof is similar to that in Lemma 4.12.

Lemma 4.15. For Case (A3)|(B6), all module-algebra structures of Uq(sl(3))
on Aq(3) are as follows:

k1(x1) = qx1, k1(x2) = qx2, k1(x3) = q2x3,

k2(x1) = qx1, k2(x2) = q−2x2, k2(x3) = q−1x3,

e1(x1) = −qb−13 x1x3 + µ1x
2
1x2, e1(x2) = −qb−13 x2x3, e1(x3) = −qb−13 x23,

e2(x1) = 0, e2(x2) = a2, e2(x3) = 0,

f1(x1) = 0, f1(x2) = 0, f1(x3) = b3,

f2(x1) = d13x3 + a−12 x1x2, f2(x2) = −qa−12 x22, f2(x3) = −qa−12 x2x3,

where d13 , a2 , µ1 , b3 ∈ C\{0} and µ1d13 = −qa−12 b−13 .

All module-algebra structures above are isomorphic to that with d13 = a2 =
b3 = 1 and µ1 = −q .
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Proof. The proof is similar to that in Lemma 4.13.

Lemma 4.16. For Case (A4)|(B5), all module-algebra structures of Uq(sl(3))
on Aq(3) are as follows:

k1(x1) = qx1, k1(x2) = q−1x2, k1(x3) = x3,

k2(x1) = x1, k2(x2) = qx2, k2(x3) = q−1x3,

e1(x1) = 0, e1(x2) = c21x1, e1(x3) = 0,

e2(x1) = 0, e2(x2) = 0, e2(x3) = c32x2,

f1(x1) = c−121 x2, f1(x2) = 0, f1(x3) = 0,

f2(x1) = 0, f2(x2) = c−132 x3, f2(x3) = 0,

where c21 , c32 ∈ C\{0}.

All the above module-algebra structures are isomorphic to that with c21 =
c32 = 1.

Proof. By the actions of k1 , e1 , f1 and k2 , e2 , f2 , it is easy to check that
(4.58)-(4.64) hold for any u ∈ {x1, x2, x3} . Therefore, by Lemma 4.4 and Lemma
4.5, they determine the module-algebra structures of Uq(sl(3)) on Aq(3).

Next, we prove that there are no other actions except these in this lemma.

By Lemma 4.5 and using that (4.58) holds for any u ∈ {x1, x2, x3} , we
can obtain that e2(x1) =

∑
n≥0 ãnx

n+2
1 xn+2

2 xn3 , e2(x2) = 0, e2(x3) = c32x2 +∑
n≥0 c̃nx

n+1
1 xn+2

2 · xn+1
3 , f2(x1) =

∑
m≥0 d̃m,m+1x

m+2
1 xm2 x

m+2
3 , f2(x2) = d23x3 +∑

m≥0 ẽm,m+1x
m+1
1 xm+1

2 xm+2
3 , f2(x3) =

∑
m≥0 g̃m,m+1x

m+1
1 xm2 x

m+3
3 .

By Lemma 4.5, we know that ãn
c̃n

= − q(2n+2)q
(2n+4)q

,
˜dm,m+1

˜em,m+1
= (2m+2)q

qm(2)q
,

˜dm,m+1

˜gm,m+1
=

q2m+2−1
1−q2m+2 = −1. Set vn = ãn

c̃n
and κm =

˜dm,m+1

˜em,m+1
.

Next, we consider e2f2(x2)− f2e2(x2) =
k2−k−1

2

q−q−1 (x2) = x2 . By some compu-
tations, we obtain

e2f2(x2)− f2e2(x2)
= c32d23x2 +

∑
n≥0

(q2n+4 − 1)d23vnx
n+1
1 xn+2

2 xn+1
3

−
∑
m≥0

(q−1 − q2m+3)c32κmx
m+1
1 xm+2

2 xm+1
3 +

∑
m≥0,n≥0

q3mn+3m+3n+2(1− q2)

·(1− q2m+2n+6)vnκmx
m+n+2
1 xm+n+3

2 xm+n+2
3 .

If there exist vn and κm not equal to zero, we can choose the terms with coefficients
vne and κmf

in e2(x1), e2(x2), e2(x3), f2(x1), f2(x2), f2(x3) such that their
degrees are highest. Then, the unique monomial of the highest degree in
(e2f2 − f2e2) (x2) is

q3mfne+3mf+3ne+2(1− q2)(1− q2mf+2ne+6)vneκmf
x
mf+ne+2
1 x

mf+ne+3
2 x

mf+ne+2
3 .

Since the degree of this term is larger than 1, this case is impossible. Similarly, all
cases except that all vn , κm are equal to zero should be excluded. Therefore, we
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obtain that e2(x1) = 0, e2(x2) = 0, e2(x3) = c32x2 , f2(x1) = 0, f2(x2) = c−132 x3
and f2(x3) = 0.

Similarly, using (4.59), Lemma 4.4 and e1f1(u) − f1e1(u) =
k1−k−1

1

q−q−1 (u) for

any u ∈ {x1, x2, x3} , we can obtain e1(x1) = 0, e1(x2) = c21x1 , e1(x3) = 0,
f1(x1) = c−121 x2 , f1(x2) = 0, f1(x3) = 0.

Therefore, there are no other actions except the ones in this lemma.

Finally, we claim that all the actions with nonzero c21 , c32 are isomorphic
to the specific action with c21 = c32 = 1. The desired isomorphism is given by
ψc21,c32 : x1 7→ x1, x2 7→ c21x2, x3 7→ c21c32x3 .

Lemma 4.17. For Case (A5)|(B6), all module-algebra structures of Uq(sl(3))
on Aq(3) are

k1(x1) = x1, k1(x2) = qx2, k1(x3) = q−1x3,

k2(x1) = qx1, k2(x2) = q−2x2, k2(x3) = q−1x3,

e1(x1) = 0, e1(x2) = 0, e1(x3) = c32x2,

e2(x1) = 0, e2(x2) = a2, e2(x3) = 0,

f1(x1) = 0, f1(x2) = c−132 x3, f1(x3) = 0,

f2(x1) = a−12 x1x2, f2(x2) = −qa−12 x22, f2(x3) = −qa−12 x2x3,

where c32 , a2 ∈ C\{0}.

All module-algebra structures are isomorphic to that with a2 = c32 = 1.

Proof. It is easy to check that the above actions of k1 , e1 , f1 and k2 , e2 , f2
determine module-algebra structures of Uq(sl(3)) on Aq(3).

Then we will prove that there are no other actions except for those in this
lemma.

By (4.58) for any u ∈ {x1, x2, x3} and Lemma 4.6, we have

e2(x1) = (q − q3)ux41x3 +
∑
n≥0

(q − q2n+5)vnx
3n+7
1 xn+1

2 xn+2
3 ,

e2(x2) = a2 + (q4 − 1)ux31x2x3 +
∑
n≥0

(q3n+7 − qn+1)vnx
3n+6
1 xn+2

2 xn+2
3 ,

e2(x3) = (q4 − 1)ux31x
2
3 +

∑
n≥0

(q4n+8 − 1)vnx
3n+6
1 xn+1

2 xn+3
3 ,

f2(x1) = gx1x2 + (q3 − q−1)εx41x22x3 +
∑
p≥0

(q2p+5 − q−1)µpx3p+7
1 xp+3

2 xp+2
3 ,

f2(x2) = −qgx22 + (q − q5)εx31x32x3 +
∑
p≥0

(qp+2 − q3p+8)µpx
3p+6
1 xp+4

2 xp+2
3 ,

f2(x3) = −qgx2x3 + (1− q6)εx31x22x23 +
∑
p≥0

(1− q4p+10)µpx
3p+6
1 xp+3

2 xp+3
3 .

Then we will consider the condition e2f2(u)− f2e2(u) =
k2−k−1

2

q−q−1 (u) for any

u ∈ {x1, x2, x3} .
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Let us assume that there exist some u or vn which are not equal to zero.
Then, we can choose the monomials in e2(x1), e2(x2), e2(x3) with the highest
degree. Obviously, these monomials are unique. It is also easy to see that f(x1),
f(x2), f(x3) can not be equal to zero simultaneously. Therefore, there are some
nonzero g , ε or µp . Similarly, those monomials in f2(x1), f2(x2), f2(x3) with
the highest degree are chosen. Then, by some computations, we can obtain a
monomial with the highest degree, whose degree is larger than 1. Then, we get a
contradiction with e2f2(x1)− f2e2(x1) = x1 . For example, if the coefficient of the
monomials in e2(x1), e2(x2) and e2(x3) is vne and the coefficient of the monomials
in f2(x1), f2(x2), f2(x3) with the highest degree is µpf , then the monomial with
the highest degree in e2f2(x1)− f2e2(x1) is

q7nepf+15ne+11pf+22(1− q2ne+2pf+10)2vneµpfx
3ne+3pf+13
1 x

ne+pf+4
2 x

ne+pf+4
3 .

Therefore, all u , vn are equal to zero. Then, e2(x1) = 0, e2(x2) = a2 and
e2(x3) = 0. Thus, we can obtain

e2f2(x1)− f2e2(x1)
= ga2x1+(1−q−4)(1+q2)εa2x

4
1x2x3+

∑
p≥0

1−q2p+6

1−q2 (q−1−p−q−3p−7)a2µpx3p+7
1 xp+2

2 xp+2
3 .

Thus, we also obtain f2(x1) = a−12 x1x2 , f2(x2) = −qa−12 x22 and f2(x3) = −qa−12 x2x3 .

On the other hand, by a similar discussion, from (4.59), Lemma 4.5 and

e1f1(u)− f1e1(u) =
k1−k−1

1

q−q−1 (u) for any u ∈ {x1, x2, x3} , we can obtain e1(x1) = 0,

e1(x2) = 0, e1(x3) = c32x2 , f1(x1) = 0, f1(x2) = c−132 x3 , f1(x3) = 0.

Therefore, there are no other actions except those in this lemma.

Finally, we claim that all module algebra structures with nonzero a2 , c32
are isomorphic to that with a2 = c32 = 1. The desired isomorphism is given by

ψa2,c32 : x1 7→ x1, x2 7→ a2x2, x3 7→ a2c32x3.

Lemma 4.18. For Case (A4)|(B7), all module-algebra structures of Uq(sl(3))
on Aq(3) are as follows

k1(x1) = qx1, k1(x2) = q−1x2, k1(x3) = x3,

k2(x1) = qx1, k2(x2) = q2x2, k2(x3) = q−1x3,

e1(x1) = 0, e1(x2) = c21x1, e1(x3) = 0,

e2(x1) = −qb−12 x1x2, e2(x2) = −qb−12 x22, e2(x3) = b−12 x2x3,

f1(x1) = c−121 x2, f1(x2) = 0, f1(x3) = 0,

f2(x1) = 0, f2(x2) = b2, f2(x3) = 0,

where b2 , c21 ∈ C\{0}.

All module-algebra structures are isomorphic to that with b2 = c21 = 1.

Proof. The proof is similar to that in Lemma 4.17.

5. Classification of Uq(sl(m + 1))-module algebra structures on
Aq(3) and Aq(2)

In this section, we will present the classification of Uq(sl(m+ 1))-module algebra
structures on Aq(3) and similarly, on Aq(2) for m ≥ 2.
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The associated classical limit actions of sl3 (which here is the Lie algebra
generated by h1 , h2 , e1 , e2 , f1 , f2 with the relations [e1, f1] = h1 , [e2, f2] = h2 ,
[e1, f2] = [e2, f1] = 0, [h1, e1] = 2e1 , [h1, e2] = −e2 , [h2, e2] = 2e2 , [h2, e1] =
−e1 , [h1, f1] = −2f1 , [h1, f2] = f2 , [h2, f2] = −2f2 , [h2, f1] = f1 , [h1, h2] =
0) on C[x1, x2, x3] by differentiations are derived from the quantum actions via
substituting k1 = qh1 , k2 = qh2 with a subsequent formal passage to the limit as
q → 1.

Since the actions of k1 , e1 , f1 and k2 , e2 , f2 in Uq(sl(3)) are symmetric,
by Lemma 4.10-Lemma 4.18 and the discussion above, we obtain the following
theorem.

Theorem 5.1. Uq(sl(3)) = H(ei, fi, k
±1
i )i=1,2 -module algebra structures up to

isomorphisms on Aq(3) when ki ∈ Aut L(Aq(3)) for i = 1, 2 and their classical
limits, i.e., Lie algebra sl3 -actions by differentiations on C[x1, x2, x3] are as fol-
lows:

Uq(sl(3))-module Classical limit
algebra structures sl3-actions on C[x1, x2, x3]
ki(xs) = ±xs, kj(xs) = ±xs, hi(xs) = 0, hj(xs) = 0,
ei(xs) = 0, ej(xs) = 0, ei(xs) = 0, ej(xs) = 0,
fi(xs) = 0, fj(xs) = 0, fi(xs) = 0, fj(xs) = 0,
s ∈ {1, 2, 3} s ∈ {1, 2, 3}
ki(x1) = q−2x1, ki(x2) = q−1x2, hi(x1) = −2x1, hi(x2) = −x2,
ki(x3) = q−1x3, kj(x1) = qx1, hi(x3) = −x3, hj(x1) = x1,
kj(x2) = qx2, kj(x3) = q2x3, hj(x2) = x2, hj(x3) = 2x3,
ei(x1) = 1, ei(x2) = 0, ei(x3) = 0, ei(x1) = 1, ei(x2) = 0, ei(x3) = 0,
ej(x1) = −qx1x3, ej(x2) = −qx2x3, ej(x1) = −x1x3, ej(x2) = −x2x3,
ej(x3) = −qx23, fi(x1) = −qx21, ej(x3) = −x23, fi(x1) = −x21,
fi(x2) = −qx1x2, fi(x3) = −qx1x3, fi(x2) = −x1x2, fi(x3) = −x1x3,
fj(x1) = 0, fj(x2) = 0, fj(x3) = 1 fj(x1) = 0, fj(x2) = 0, fj(x3) = 1
ki(x1) = q−2x1, ki(x2) = q−1x2, hi(x1) = −2x1, hi(x2) = −x2,
ki(x3) = q−1x3, kj(x1) = qx1, hi(x3) = −x3, hj(x1) = x1,
kj(x2) = q−1x2, kj(x3) = x3, hj(x2) = −x2, hj(x3) = 0,
ei(x1) = 1, ei(x2) = 0, ei(x3) = 0, ei(x1) = 1, ei(x2) = 0, ei(x3) = 0,
ej(x1) = 0, ej(x2) = x1, ej(x3) = 0, ej(x1) = 0, ej(x2) = x1, ej(x3) = 0,
fi(x1) = −qx21, fi(x2) = −qx1x2, fi(x1) = −x21, fi(x2) = −x1x2,
fi(x3) = −qx1x3, fi(x3) = −x1x3,
fj(x1) = x2, fj(x2) = 0, fj(x3) = 0 fj(x1) = x2, fj(x2) = 0, fj(x3) = 0
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ki(x1) = qx1, ki(x2) = qx2, hi(x1) = x1, hi(x2) = x2,
ki(x3) = q2x3, kj(x1) = x1, hi(x3) = 2x3, hj(x1) = 0,
kj(x2) = qx2, kj(x3) = q−1x3, hj(x2) = x2, hj(x3) = −x3,
ei(x1) = −qx1x3, ei(x2) = −qx2x3, ei(x1) = −x1x3, ei(x2) = −x2x3,
ei(x3) = −qx23, ej(x1) = 0, ei(x3) = −x23, ej(x1) = 0,
ej(x2) = 0, ej(x3) = x2, ej(x2) = 0, ej(x3) = x2,
fi(x1) = 0, fi(x2) = 0, fi(x3) = 1, fi(x1) = 0, fi(x2) = 0, fi(x3) = 1,
fj(x1) = 0, fj(x2) = x3, fj(x3) = 0 fj(x1) = 0, fj(x2) = x3, fj(x3) = 0
ki(x1) = qx1, ki(x2) = q−1x2, hi(x1) = x1, hi(x2) = −x2,
ki(x3) = x3, kj(x1) = x1, hi(x3) = 0, hj(x1) = 0,
kj(x2) = qx2, kj(x3) = q−1x3, hj(x2) = x2, hj(x3) = −x3,
ei(x1) = 0, ei(x2) = x1, ei(x3) = 0, ei(x1) = 0, ei(x2) = x1, ei(x3) = 0,
ej(x1) = 0, ej(x2) = 0, ej(x3) = x2, ej(x1) = 0, ej(x2) = 0, ej(x3) = x2,
fi(x1) = x2, fi(x2) = 0, fi(x3) = 0, fi(x1) = x2, fi(x2) = 0, fi(x3) = 0,
fj(x1) = 0, fj(x2) = x3, fj(x3) = 0 fj(x1) = 0, fj(x2) = x3, fj(x3) = 0
ki(x1) = qx1, ki(x2) = q−1x2, hi(x1) = x1, hi(x2) = −x2,
ki(x3) = x3, kj(x1) = qx1, hi(x3) = 0, hj(x1) = x1,
kj(x2) = q2x2, kj(x3) = q−1x3, hj(x2) = 2x2, hj(x3) = −x3,
ei(x1) = 0, ei(x2) = x1, ei(x3) = 0, ei(x1) = 0, ei(x2) = x1, ei(x3) = 0,
ej(x1) = −qx1x2, ej(x2) = −qx22, ej(x1) = −x1x2, ej(x2) = −x22,
ej(x3) = x2x3, fi(x1) = x2, ej(x3) = x2x3, fi(x1) = x2,
fi(x2) = 0, fi(x3) = 0, fi(x2) = 0, fi(x3) = 0,
fj(x1) = 0, fj(x2) = 1, fj(x3) = 0 fj(x1) = 0, fj(x2) = 1, fj(x3) = 0
ki(x1) = x1, ki(x2) = qx2, hi(x1) = 0, hi(x2) = x2,
ki(x3) = q−1x3, kj(x1) = qx1, hi(x3) = −x3, hj(x1) = x1,
kj(x2) = q−2x2,kj(x3) = q−1x3, hj(x2) = −2x2, hj(x3) = −x3,
ei(x1) = 0, ei(x2) = 0, ei(x1) = 0, ei(x2) = 0,
ei(x3) = x2, ej(x1) = 0, ei(x3) = x2, ej(x1) = 0,
ej(x2) = 1, ej(x3) = 0, ej(x2) = 1, ej(x3) = 0,
fi(x1) = 0, fi(x2) = x3, fi(x3) = 0, fi(x1) = 0, fi(x2) = x3, fi(x3) = 0,
fj(x1) = x1x2, fj(x2) = −qx22, fj(x1) = x1x2, fj(x2) = −x22,
fj(x3) = −qx2x3 fj(x3) = −x2x3
ki(x1) = q−2x1, ki(x2) = q−1x2, hi(x1) = −2x1, hi(x2) = −x2,
ki(x3) = q−1x3, kj(x1) = qx1, hi(x3) = −x3, hj(x1) = x1,
kj(x2) = q2x2, kj(x3) = q−1x3, hj(x2) = 2x2, hj(x3) = −x3,
ei(x1) = 1, ei(x2) = 0, ei(x3) = 0, ei(x1) = 1, ei(x2) = 0, ei(x3) = 0,
ej(x1) = −qx1x2, ej(x2) = −qx22, ej(x1) = −x1x2, ej(x2) = −x22,
ej(x3) = x1 + x2x3, fi(x1) = −qx21, ej(x3) = x1 + x2x3, fi(x1) = −x21,
fi(x2) = −qx1x2, fi(x2) = −x1x2,
fi(x3) = −qx1x3 − qx2x23, fi(x3) = −x1x3 − x2x23,
fj(x1) = 0, fj(x2) = 1, fj(x3) = 0 fj(x1) = 0, fj(x2) = 1, fj(x3) = 0
ki(x1) = qx1, ki(x2) = qx2, hi(x1) = x1, hi(x2) = x2,
ki(x3) = q2x3, kj(x1) = qx1, hi(x3) = 2x3, hj(x1) = x1,
kj(x2) = q−2x2, kj(x3) = q−1x3, hj(x2) = −2x2, hj(x3) = −x3,
ei(x1) = −qx1x3 − qx21x2, ei(x1) = −x1x3 − x21x2,
ei(x2) = −qx2x3, ei(x3) = −qx23, ei(x2) = −yz, ei(x3) = −x23,
ej(x1) = 0, ej(x2) = 1, ej(x3) = 0, ej(x1) = 0, ej(x2) = 1, ej(x3) = 0,
fi(x1) = 0, fi(x2) = 0, fi(x3) = 1, fi(x1) = 0, fi(x2) = 0, fi(x3) = 1,
fj(x1) = x3 + x1x2, fj(x2) = −qx22, fj(x1) = x3 + x1x2, fj(x2) = −x22,
fj(x3) = −qx2x3 fj(x3) = −x2x3
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for any i = 1, j = 2 or i = 2, j = 1. Moreover, there are no isomorphisms be-
tween these nine kinds of module-algebra structures.

Remark 5.2. Case (5) when i = 1, j = 2 in Theorem 5.1 is the case discussed
in [15] when n = 3.

Let us denote the actions of Uq(sl(2)) on Aq(3) in (A1), those in (A2) and
(B3) in Lemma 4.11, those in (B4) in Lemma 4.12, those in (B5) in Lemma 4.14,
those in (B6) in Lemma 4.17 and those in (B7) in Lemma 4.18 by ?1, ?2, ?3, ?4,
?5, ?6, ?7 respectively. In addition, denote the actions of Uq(sl(2)) on Aq(3) in
(A2) and (B7) in Lemma 4.13, those in (A3) and (B6) in Lemma 4.15 by ?2′ , ?7′ ,
?3′ , ?6′ respectively. If ?s and ?t are compatible, in other words, they determine
a Uq(sl(3))-module algebra structure on Aq(3), we use an edge connecting ?s and
?t , since k1 , e1 , f1 and k2 , e2 , f2 are symmetric in Uq(sl(3)). Then, we can use
the following diagrams to denote all actions of Uq(sl(3)) = H(ei, fi, ki, k

−1
i )i=1,2 on

Aq(3) when ki ∈ Aut L(Aq(3)) for i = 1, 2:

?1 ?1 , ?7′ ?2′ , ?3′ ?6′ , (5.65)

?2 ?3

?7 ?4 ?5 ?6

. (5.66)

Here, every two adjacent vertices corresponds to two classes of the module-algebra
structures of Uq(sl(3)) on Aq(3). For example, ?2 ?3 corresponds to the
following two kinds of module-algebra structures of Uq(sl(3)) on Aq(3): one has
actions of k1 , e1 , f1 that are of type ?2 and actions of k2 , e2 , f2 that are of type
?3; the other has actions of k1 , e1 , f1 that are of type ?3 and actions of k2 , e2 ,
f2 that are of type ?2.

Next, we will begin to study the module-algebra structures of Uq(sl(m +
1)) = H(ei, fi, k

±1
i )1≤i≤m on Aq(3), when ki ∈ Aut L(Aq(3)) for i = 1, · · · ,m and

m ≥ 3. The corresponding Dynkin diagram of sl(m + 1) with m vertices is as
follows:

◦ ◦ · · · ◦ ◦ .

In Uq(sl(m+ 1)), every vertex corresponds to one Hopf subalgebra isomorphic to
Uq(sl(2)) and two adjacent vertices correspond to one Hopf subalgebra isomorphic
to Uq(sl(3)). Therefore, for studying the module-algebra structures of Uq(sl(m+
1)) on Aq(3), we have to endow every vertex in the Dynkin diagram of sl(m+ 1)
an action of Uq(sl(2)) on Aq(3). Moreover, there are some rules which we should
obey:

1. Since every pair of adjacent vertices in the Dynkin diagram corresponds to
one Hopf subalgebra isomorphic to Uq(sl(3)), by Theorem 5.1, the action of
Uq(sl(2)) on Aq(3) on every vertex should be one of the following 11 kinds
of possibilities: ?1, ?2, ?3, ?4, ?5, ?6, ?7, ?2′ , ?7′ , ?3′ , ?6′ . Moreover,
every pair of adjacent vertices should be of the types in (5.65) and (5.66).
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2. Except for ?1, any type of action of Uq(sl(2)) on Aq(3) cannot be endowed
with two different vertices simultaneously, since the relations (2.2) acting on
x1 , x2 , x3 to produce zero cannot be satisfied.

3. If every vertex in the Dynkin diagram of sl(m+1) is endowed with an action
of Uq(sl(2)) on Aq(3) which is not of Case ?1, any two vertices which are
not adjacent cannot be endowed with the types which are adjacent (5.65)
and (5.66).

Theorem 5.3. If m ≥ 4, all module-algebra structures of Uq(sl(m + 1)) =
H(ei, fi, k

±1
i )1≤i≤m on Aq(3) when ki ∈ Aut L(Aq(3)) for i = 1, · · · ,m are as

follows

ki(x1) = ±x1, ki(x2) = ±x2, ki(x3) = ±x3,
ei(x1) = ei(x2) = ei(x3) = fi(x1) = fi(x2) = fi(x3) = 0,

for any i ∈ {1, 2, · · · ,m}.

For m = 3, all module-algebra structures of Uq(sl(4)) = H(ei, fi, k
±1
i )i=1,2,3

on Aq(3) when ki ∈ Aut L(Aq(3)) for i = 1, 2, 3 are given by
(1)

ki(x1) = ±x1, ki(x2) = ±x2, ki(x3) = ±x3,
ei(x1) = ei(x2) = ei(x3) = fi(x1) = fi(x2) = fi(x3) = 0,

for any i ∈ {1, 2, 3}. All these module-algebra structures are not pairwise non-
isomorphic.
(2)

ki(x1) = qx1, ki(x2) = q−1x2, ki(x3) = x3,

ei(x1) = 0, ei(x2) = c21x1, ei(x3) = 0,

fi(x1) = c−121 x2, fi(x2) = 0, fi(x3) = 0,

kj(x1) = q−2x1, kj(x2) = q−1x2, kj(x3) = q−1x3,

ej(x1) = a1, ej(x2) = 0, ej(x3) = 0,

fj(x1) = −qa−11 x21, fj(x2) = −qa−11 x1x2, fj(x3) = −qa−11 x1x3,

ks(x1) = qx1, ks(x2) = qx2, ks(x3) = q2x3,

es(x1) = −qb−13 x1x3, es(x2) = −qb−13 x2x3, es(x3) = −qb−13 x23,

fs(x1) = 0, fs(x2) = 0, fs(x3) = b3,

where a1 , b3 , c21 ∈ C\{0} and i = 1, j = 2, s = 3 or i = 3, j = 2, s = 1. All
these module-algebra structures are isomorphic to that with a1 = b3 = c21 = 1.
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(3)

ki(x1) = qx1, ki(x2) = q−1x2, ki(x3) = x3,

ei(x1) = 0, ei(x2) = c21x1, ei(x3) = 0,

fi(x1) = c−121 x2, fi(x2) = 0, fi(x3) = 0,

kj(x1) = x1, kj(x2) = qx2, kj(x3) = q−1x3,

ej(x1) = 0, ej(x2) = 0, ej(x3) = c32x2,

fj(x1) = 0, fj(x2) = c−132 x3, fj(x3) = 0,

ks(x1) = qx1, ks(x2) = qx2, ks(x3) = q2x3,

es(x1) = −qb−13 x1x3, es(x2) = −qb−13 x2x3, es(x3) = −qb−13 x23,

fs(x1) = 0, fs(x2) = 0, fs(x3) = b3,

where b3 , c21 , c32 ∈ C\{0} and i = 1, j = 2, s = 3 or i = 3, j = 2, s = 1. All
these module-algebra structures are isomorphic to that with b3 = c21 = c32 = 1.
(4)

ki(x1) = q−2x1, ki(x2) = q−1x2, ki(x3) = q−1x3,

ei(x1) = a1, ei(x2) = 0, ei(x3) = 0,

fi(x1) = −qa−11 x21, fi(x2) = −qa−11 x1x2, fi(x3) = −qa−11 x1x3,

kj(x1) = qx1, kj(x2) = qx2, kj(x3) = q2x3,

ej(x1) = −qb−13 x1x3, ej(x2) = −qb−13 x2x3, ej(x3) = −qb−13 x23,

fj(x1) = 0, fj(x2) = 0, fj(x3) = b3,

ks(x1) = x1, ks(x2) = qx2, ks(x3) = q−1x3,

es(x1) = 0, es(x2) = 0, es(x3) = c32x2,

fs(x1) = 0, fs(x2) = c−132 x3, fs(x3) = 0,

where a1 , b3 , c32 ∈ C\{0} and i = 1, j = 2, s = 3 or i = 3, j = 2, s = 1. All
these module-algebra structures are isomorphic to that with a1 = b3 = c32 = 1.
(5)

ki(x1) = q−2x1, ki(x2) = q−1x2, ki(x3) = q−1x3,

ei(x1) = a1, ei(x2) = 0, ei(x3) = 0,

fi(x1) = −qa−11 x21, fi(x2) = −qa−11 x1x2, fi(x3) = −qa−11 x1x3,

kj(x1) = qx1, kj(x2) = q−1x2, kj(x3) = x3,

ej(x1) = 0, ej(x2) = c21x1, ej(x3) = 0,

fj(x1) = c−121 x2, fj(x2) = 0, fj(x3) = 0,

ks(x1) = x1, ks(x2) = qx2, ks(x3) = q−1x3,

es(x1) = 0, es(x2) = 0, es(x3) = c32x2,

fs(x1) = 0, fs(x2) = c−132 x3, fs(x3) = 0,

where a1 , c21 , c32 ∈ C\{0} and i = 1, j = 2, s = 3 or i = 3, j = 2, s = 1. All
these module-algebra structures are isomorphic to that with a1 = c21 = c32 = 1.
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Proof. First, we consider the case when m ≥ 5. By the above discussion, since
there are no paths in (5.66) whose length is larger than 4 and any two vertices
which are not adjacent in this path have no edge connecting them in (5.65) and
(5.66), the unique possibility of putting the actions of Uq(sl(2)) on the m vertices
in the Dynkin diagram is as follows:

?1 ?1 · · · ?1 ?1 .

Obviously, the above case determines the module-algebra structures of Uq(sl(m+
1)) on Aq(3).

Second, let us study the case when m = 3. By the above rules, and because
the Dynkin diagram of sl(4) is symmetric, we only need to check the following
cases

?7 ?4 ?5 , ?7 ?4 ?2 , ?4 ?2 ?3 ,

?4 ?5 ?3 , ?4 ?5 ?6 , ?2 ?3 ?5 ,

?2 ?4 ?5 , ?3 ?5 ?6 , ?1 ?1 ?1 .

To determine the module-algebra structures of Uq(sl(4)) on Aq(3), we still have
to check the following equalities

k1e3(u) = e3k1(u), k1f3(u) = f3k1(u), k3e1(u) = e1k3(u), k3f1(u) = f1k3(u),

e1f3(u) = f3e1(u), e3f1(u) = f1e3(u), e1e3(u) = e3e1(u), f1f3(u) = f3f1(u),

for any u ∈ {x1, x2, x3} . For ?7 ?4 ?5 , since k1e3(x3) = k1(b3x2) =
q2b3x2 and e3k1(x3) = q−1b3x2 , k1e3(x3) 6= e3k1(x3). Therefore, ?7 ?4 ?5
is excluded. Similarly, we exclude ?7 ?4 ?2 , ?4 ?5 ?6 , and

?3 ?5 ?6 . Moreover, it is easy to check the five remaining cases deter-
mine the module-algebra structures of Uq(sl(4)) on Aq(3).

Thirdly, we consider the case when m = 4. By the discussion above, we
only need to check the cases

?7 ?4 ?2 ?3 , ?7 ?4 ?5 ?3 ,

?7 ?4 ?5 ?6 , ?2 ?3 ?5 ?6 ,

?1 ?1 ?1 ?1 .

Since the three adjacent vertices in the Dynkin diagram of sl(5) correspond to
one Hopf algebra isomorphic to Uq(sl(4)), by the results of the module-algebra
structures of Uq(sl(4)) on Aq(3), there is only one possibility:

?1 ?1 ?1 ?1 .

Finally, we consider the isomorphism classes. Here, we will only show
that all the module-algebra structures of Uq(sl(4)) on Aq(3) in Case (2) are
isomorphic to that with a1 = c21 = b3 = 1. The desired isomorphism is given by
ψa1,c21,b3 : x1 → a1x1, x2 → a1c21x2, x3 → b3x3 . The other cases can be considered
similarly.
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Remark 5.4. By Theorem 5.3, the classical limits of the above actions, i.e. the
Lie algebra slm+1 -actions by differentiations on C[x1, x2, x3] can also be obtained,
as before.

Finally, we present a classification of Uq(sl(m + 1))-module algebra struc-
tures on Aq(2).

Since all module-algebra structures of Uq(sl(2)) on Aq(2) are presented in
[8], using the same method as above and by some computations, we can obtain
the following theorem.

Theorem 5.5. Uq(sl(3))-module algebra structures on Aq(2) up to isomor-
phisms and their classical limits are as follows:

Uq(sl(3))-module Classical limit
algebra structures sl3-actions on C[x1, x2]
ki(xs) = ±xs, kj(xs) = ±xs, hi(xs) = 0, hj(xs) = 0,
ei(xs) = 0, ej(xs) = 0, ei(xs) = 0, ej(xs) = 0,
fi(xs) = 0, fj(xs) = 0, fi(xs) = 0, fj(xs) = 0,
s ∈ {1, 2} s ∈ {1, 2}
ki(x1) = q−2x1, ki(x2) = q−1x2, hi(x1) = −2x1, hi(x2) = −x2,
kj(x1) = qx1, kj(x2) = q−1x2, hj(x1) = x1, hj(x2) = −x2,
ei(x1) = 1, ei(x2) = 0, ei(x1) = 1, ei(x2) = 0,
ej(x1) = 0, ej(x2) = x1, ej(x1) = 0, ej(x2) = x1,
fi(x1) = −qx21, fi(x2) = −qx1x2, fi(x1) = −x2, fi(x2) = −x1x2,
fj(x1) = x2, fj(x2) = 0 fj(x1) = x2, fj(x2) = 0
ki(x1) = qx1, ki(x2) = q2x2, hi(x1) = x1, hi(x2) = 2x2,
kj(x1) = qx1, kj(x2) = q−1x2, hj(x1) = x1, hj(x2) = −x2,
ei(x1) = −qx1x2, ei(x2) = −qx22, ei(x1) = −x1x2, ei(x2) = −x22,
ej(x1) = 0, ej(x2) = x1, ej(x1) = 0, ej(x2) = x1,
fi(x1) = 0, fi(x2) = 1, fi(x1) = 0, fi(x2) = 1,
fj(x1) = x2, fj(x2) = 0 fj(x1) = x2, fj(x2) = 0
ki(x1) = q−2x1, ki(x2) = q−1x2, hi(x1) = −2x1, hi(x2) = −x2,
kj(x1) = qx1, kj(x2) = q2x2, hj(x1) = x1, hj(x2) = 2x2,
ei(x1) = 1, ei(x2) = 0, ei(x1) = 1, ei(x2) = 0,
ej(x1) = −qx1x2, ej(x2) = −qx22, ej(x1) = −x1x2, ej(x2) = −x22,
fi(x1) = −qx21, fi(x2) = −qx1x2, fi(x1) = −x21, fi(x2) = −x1x2,
fj(x1) = 0, fj(x2) = 1 fj(x1) = 0, fj(x2) = 1

for any i = 1, j = 2 or i = 2, j = 1. Note that there are no isomorphisms
between these four kinds of module-algebra structures.

Moreover, for any m ≥ 3, all module-algebra structures of Uq(sl(m + 1))
on Aq(2) are as follows:

ki(x1) = ±x1, ki(x2) = ±x2,
ei(x1) = ei(x2) = fi(x1) = fi(x2) = 0,

for any i ∈ {1, · · · ,m}.
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6. Uq(sl(m + 1))-module algebra structures on Aq(n) (n ≥ 4)

In this section, we will study the module algebra structures of Uq(sl(m + 1)) =
H(ei, fi, k

±1
i )1≤i≤m on Aq(n) when ki ∈ AutL(Aq(n)) for i = 1, · · · ,m and n ≥ 4.

By Theorem 3.1 and with a similar discussion in Section 4, we can obtain
the following proposition.

Proposition 6.1. For n ≥ 4, the module-algebra structures of Uq(sl(2)) on
Aq(n) are as follows:

(1) k(xi) = ±xi, e(xi) = f(xi) = 0,

for any i ∈ {1, · · · , n}. All these structures are pairwise nonisomorphic.

(2) k(xi) = qxi for ∀ i < j, k(xj) = q−2xj, k(xi) = q−1xi for ∀ i > j,

e(xi) = 0 for ∀ i 6= j, e(xj) = aj,

f(xi) = a−1j xixj for ∀ i < j, f(xj) = −qa−1j x2j ,

f(xi) = −qa−1j xjxi for ∀ i > j,

for any j ∈ {1, · · · , n} and aj ∈ C \ {0}. If j is fixed, then all of these structures
are isomorphic to that with aj = 1.

(3) k(xi) = qxi for ∀ i < j, k(xj) = q2xj, k(xi) = q−1xi for ∀ i > j,

e(xi) = −qb−1j xixj for ∀ i < j, e(xj) = −qb−1j x2j ,

e(xi) = b−1j xjxi for ∀ i > j, f(xi) = 0 for ∀ i 6= j, f(xj) = bj,

for any j ∈ {1, · · · , n} and bj ∈ C \ {0}. If j is fixed, then all of these structures
are isomorphic to that with bj = 1.

(4) k(xi) = xi for ∀ i < j, k(xj) = qxj,

k(xj+1) = q−1xj+1, k(xi) = xi for ∀ i > j + 1,

e(xi) = 0 for ∀ i 6= j + 1, e(xj+1) = cj+1,jxj,

f(xi) = 0 for ∀ i 6= j, f(xj) = c−1j+1,jxj+1,

for any j ∈ {1, · · · , n − 1} and cj+1,j ∈ C \ {0}. If j is fixed, then all of these
structures are isomorphic to that with cj+1,j = 1.

Remark 6.2. In Proposition 6.1 we have presented only the simplest module-
algebra structures. It is also complicated to give the solutions of (3.18) and (3.19)
for all cases. For example, by a very complex computation, we can obtain that

in Case

([
a1 0 · · · 0
0 0 · · · 0

]
0

,

[
0 0 · · · 0
0 0 · · · 0

]
1

)
, all Uq(sl(2))-module algebra

structures on Aq(n) are given by
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k(x1) = q−2x1, k(xi) = q−1xi for ∀ i > 1,

e(x1) = a1, e(xi) = 0 for ∀ i > 1,

f(x1) = −qa−11 x21,

f(x2) = −qa−11 x1x2 +
∑

2<s≤n

v̂2s2x2x
2
s +

∑
2<s<k<l≤n

α22klx2xkxl + β22x
3
2,

f(xi) = −qa−11 x1xi + (3)qβ22x
2
2xi −

∑
2<s<i≤n

q−1(3)qv̂2s2x
2
sxi

+
(2)q
(3)q

αn2inx2x
2
i +

∑
2<i<t≤n

v̂2t2xix
2
t −

∑
2<s<i<n

q−1(2)qα22si

·xsx2i +
q

(2)q
v̂nn2x2xixn +

∑
2<k<i<n

αn2knx2xkxi

+
∑

2<i<k<n

q

(3)q
αn2knx2xixk −

∑
2<s<i<k≤n

α22skxsxixk

+
∑

2<i<k<l≤n

α22klxixkxl −
∑

2<s<k<i<n

q−1(3)qα22skxsxkxi

−q−1v̂2i2x3i ,

where 2 < i < n ,

f(xn) = −qa−11 x1xn + (3)qβ22x
2
2xn −

∑
2<s<n

q−1(3)qv̂2s2x
2
sxn

+v̂nn2x2x
2
n −

∑
2<k<n

q−1(2)qα22knxkx
2
n +

∑
2<k<n

αn2knx2xkxn

−
∑

2<s<k<n

q−1(3)qα22skxsxkxn − q−1v̂2n2x3n,

where a1 ∈ C \ {0} and v̂2i2 , α22kl , β22 , v̂nn2 , αn2kn ∈ C .

Let us denote the module-algebra structures of Case (1), those in Case (2), Case
(3) and Case (4) in Proposition 6.1 by D , Aj , Bj and Cj respectively. For
determining the module-algebra structures of Uq(sl(3)) on Aq(n), we only need
to check whether (4.58)-(4.64) hold for any u ∈ {x1, · · · , xn} . For convenience,
we introduce a notation: if the actions of ks , es , fs are of the type Ai and the
actions of kt , et , ft are of the type Bj , they determine a module-algebra structure
of Uq(sl(3)) on Aq(n) for s = 1, t = 2 or s = 2, t = 1, then we say Ai and Bj are
compatible. By some computations, we can obtain that D and D are compatible,
Ai and Bj are compatible if and only if i = 1 and j = n , Ai and Cj are compatible
if and only if i = j , Bi and Cj are compatible if and only if j = i + 1, Ci and
Cj are compatible if and only if i = j + 1 or i = j − 1, and any two other cases
are not compatible. As before, we use two adjacent vertices to mean two classes
of module-algebra structures of Uq(sl(3)) on Aq(n).

Therefore, by the above discussion, similar to that in Section 5, we can
obtain the following proposition.
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Proposition 6.3. For n ≥ 4, there are the module-algebra structures of Uq(sl(3))
on Aq(n) as follows:

D D , A1

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT A2 · · · An−2 An−1

C1

AA
AA

AA
AA

C2

AA
AA

AA
AA

A
· · ·

EE
EE

EE
EE

E Cn−2

GG
GG

GG
GG

G
Cn−1

EE
EE

EE
EE

B2 · · · Bn−2 Bn−1 Bn

.(6.67)

Here, every two adjacent vertices determine two classes of module-algebra struc-
tures of Uq(sl(3)) on Aq(n).

Then, for determining the module-algebra structures of Uq(sl(m + 1)) on
Aq(n), we have to find the pairs of vertices which are not adjacent in (6.67) and
satisfy the following relation: kiej(xs) = ejki(xs), kjei(xs) = eikj(xs), kifj(xs) =
fjki(xs), kjfi(xs) = fikj(xs), eiej(xs) = ejei(xs), eifj(xs) = fjei(xs), fifj(xs) =
fjfi(xs) where one vertex corresponds to the actions of ki , ei and fi and the other
vertex corresponds to the actions of kj , ej and fj , s ∈ {1, · · · , n} . It is easy to
check that Ai and Cj satisfy the above relations if and only if i < j or i > j + 1,
Bi and Cj satisfy the above relations if and only if i < j or i > j + 1, Ci and Cj
satisfy the above relations if and only if i 6= j + 1 or j 6= i+ 1, and any other two
vertices do not satisfy the above relations.

We also use m adjacent vertices to mean two classes of the module-algebra
structures of Uq(sl(m+ 1)) on Aq(n). For example,

Bn A1 C1 · · · Cm−2

determines two classes of the module-algebra structures of Uq(sl(m+1)) on Aq(n)
as follows: the one is that the actions of k1 , e1 , f1 are of the type Bn , those of
k2 , e2 , f2 are of the type A1 and those of ki , ei , fi are of the type Ci−2 for any
3 ≤ i ≤ m . The other is that the actions of ki , ei , fi are of the type Cm−1−i for
any 1 ≤ i ≤ m − 2, those of km−1 , em−1 , fm−1 are of the type A1 and those of
km , em , fm are of the type Bn .

Therefore, we obtain the following theorem.

Theorem 6.4. For m ≥ 3, n ≥ 4, the module-algebra structures of
Uq(sl(m+ 1)) on Aq(n) are as follows:

D D · · · D︸ ︷︷ ︸
m

, (6.68)

Ai Ci · · · Ci+m−2 , (6.69)

Ci Ci+1 · · · Ci+m−2 Bi+m−1 , (6.70)

Ci Ci+1 · · · Ci+m−1 , (6.71)

A1 Bn Cn−1 · · · Cn+2−m , (6.72)
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where n+ 2−m > 1,

Bn A1 C1 · · · Cm−2 , (6.73)

where m− 2 < n− 1.

Here, every such diagram corresponds to two classes of the module-algebra
structures of Uq(sl(m+ 1)) on Aq(n).

Remark 6.5. When m = n− 1 and the indexes of the vertices of the Dynkin
diagram are given 1, · · · , n− 1 from the left to the right, the actions correspond
to (6.71), i.e., C1 C2 · · · Cn−1 is the case discussed in [15]. In
addition, we are sure that when m ≥ n + 1, all the module-algebra structures of
Uq(sl(m + 1)) on Aq(n) are of the type in (6.68), since there are no paths whose
length is larger than n + 1 and any two vertices which are not adjacent in this
path have no edge connecting them in (6.67). The detailed proof may be similar
to that in Section 5. Moreover, the module-algebra structures of the quantum
enveloping algebras corresponding to the other semisimple Lie algebras on Aq(n)
can be considered in the same way.
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